簡易檢索 / 詳目顯示

研究生: 蕭亞漩
Hsiao, Ya-Hsuan
論文名稱: 計算流體力學模擬及分析建築外殼中相變材料的熱效應
Computational Fluid Dynamic Simulation to Analyze the Thermal Effect of Phase Change Material in Building Envelope
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 陳貴通
劉銘龍
凌永健
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 相變材料熱效應計算流體力學建築外殼立體模型模擬
外文關鍵詞: Phase change material, Thermal performance, Computational fluid dynamic, Building envelope, 3D model simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築是全球溫室氣體排放的三大來源之一,建築日常使用時為維持建築內空間舒適,在運行過程中消耗大量的化石燃料,儘管台灣冬季暖氣需求不高,但夏季空調需求仍是造成建築二氧化碳排放量居高不下的主因。為降低日常使用的能源消耗,減少所排放的二氧化碳量,具有調控室內溫度功能的新型建築材料,利用熱能儲存(Thermal energy storage)技術降低建築耗能與排碳量。相變材料的建築外殼藉由材料吸收或放出的熱量,維持室內溫度恆定,減少室內受到外界溫度影響。
    本研究挑選適合台灣夏季氣溫的正十八烷作為相變材料,並突破一般實驗侷限於小尺度的限制,使用流體力學計算軟體(Computational fluid dynamic, CFD) ANSYS Inc. Fluent準確模擬正十八烷相變情形,第一部分建構全尺度虛擬立體3D模型,液化比例顯示,正十八烷層隨時間增加逐漸融化,表示成功模擬相變材料利用潛熱儲存熱量的過程;接著探討建築外殼材料對於整棟建築室內溫度影響,包括對照組傳統水泥牆以及具有隔熱效果的保麗龍進行對比,平均溫度差為對照組0.25 K、隔熱組1.26 K、相變組2.29 K,相變組表現維持室內舒適度表現最佳。第二部份利用簡化平面2D模型進行正十八烷的熱傳導係數分析並探討中空外牆效果,低、高熱傳組降溫效果幾乎相同,但相變化比例分別為31.3 %和29.0 %;台灣氣候下,低傳熱能力的相變材料作為建築外殼具有較好的利用率。中空外牆可降溫2.43 K,但室內空氣些許上升,對於調控室內溫度仍效果不佳。
    本研究利用流體力學計算,可以更準確模擬相變材料儲存熱量的過程,對於相變材料功能性改良能夠提供正確的方向。


    Housing is one of the three major sources responsible for the global greenhouse gas emissions, mainly due to the consumption of large amounts of fossil fuels during daily use. Although central-heating system is not used in Taiwan, summer air-conditioning demand is still the main reason of high carbon dioxide emissions. In order to reduce daily carbon dioxide emissions, phase change materials used in the buildings envelope can regulate indoor temperature for human comfort.
    In this study, we use computational fluid dynamic software, ANSYS Inc. Fluent, to simulate the building performance and construct a real size 3D model to emulate the phase change process and temperature regulation.
    In the 3D building envelope model, three different kinds of materials are incorporated, they are concrete, expanded polystyrene and n-octadecane respectively. Concrete is the traditional wall material and it reduces 0.25 K from outside temperature. Expanded polystyrene is heat insulator, and it reduces 1.26 K. We chose n-octadecane as the phase change material and it reduces 2.29 K. Results show that phase change material can stabilize indoor temperature and its thermal performance is the best. In the second part, we used simplified 2D model to study the relationship between thermal conductivity of n-octadecane and its thermal performance. We concluded that n-octadecane with higher thermal conductivity is more efficient to use. Finally, hollow wall can reduce 2.43 K but there will cause a rise in indoor air temperature.
    As a result, n-octadecane is an effective energy saving material used in a building envelope in subtropical climate.

    目錄 目錄 I 表目錄 IV 圖目錄 V 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 4 第二章 相變材料 11 2-1 簡介 11 2-2 分類 13 2-3 材料性質 14 2-4 相變材料改良 16 2-5 相變材料與建築材料複合 18 第三章 數值模擬簡介 20 3-1 模擬計算軟體 20 3-2 計算流體力學 21 3-2-1 流體力學方程式 22 3-1-2 數值近似法:有限體積法 25 第四章 實驗設計 26 4-1 幾何模型建構 27 4-1-1 立體3D房間模型 27 4-1-2 平面2D房間模型 29 4-1-3 牆壁模型 29 4-2 網格劃分 31 4-3 參數設定 32 4-4 運算設定 33 第五章 結果與討論 35 5-1 網格劃分 35 5-2 材料選擇 40 5-3 計算次數 40 5-4 立體3D模型結果 45 5-4-1 溫度變化 45 5-4-2 室內立體風場狀態 56 5-4-3 相變材料融化狀態 59 5-4-4 降溫效果 62 5-5 平面2D模型結果 64 5-5-1 溫度變化 64 5-5-2 相變材料融化狀態 72 5-6 建築節能方法 81 第六章 結論與展望 82 第七章 參考文獻 84

    1.Core Writing Team, P., R.K. and Reisinger, A. (Eds.) Climate Change 2007: Synthesis Report. ; IPCC: Geneva, Switzerland, 2007; p 104.

    2.永續能源政策綱領, 行政院經濟建設委員會:中華民國,2008。

    3.建築與氣候變化:決策者摘要,UNEP:2009.

    4.林憲德,台灣綠建築政策的成就。 科學發展 2011, p 7.

    5.張又升,建築物生命週期二氧化碳減量評估。國立成功大學博士論文, 2002。

    6.Zalba, B.; Marin, J. M.; Cabeza, L. F.; Mehling, H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003, 23 (3), 251-283.

    7.T.R. Whiffen, S. B. R., A review of PCM technology for thermal energy storage in the built environment: Part I. International Journal of Low-Carbon Technologies 2012, 0, 12.

    8.Tyagi, V. V.; Buddhi, D., PCM thermal storage in buildings: A state of art. Renew Sust Energ Rev 2007, 11 (6), 1146-1166.

    9.MarcoPerino, Experimental assessment of the thermal behavior of a PCM glazing. In Indoor Air Quality, Ventilation and Energy Conservation in Buildings, New York, USA, 2010.

    10.Dincer I, R. M., Thermal Energy Storage Systems and Applications. Wiley & Sons: 2011.

    11.Abhat, A., Low-Temperature Latent-Heat Thermal-Energy Storage - Heat-Storage Materials. Sol Energy 1983, 30 (4), 313-332.

    12.Zhou, D.; Zhao, C. Y.; Tian, Y., Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energ 2012, 92, 593-605.

    13.Sasaguchi, K.; Viskanta, R., Phase-Change Heat-Transfer during Melting and Resolidification of Melt around Cylindrical Heat Source(S) Sink(S). J Energ Resour-Asme 1989, 111 (1), 43-49.

    14.Feldman, D.; Banu, D.; Hawes, D.; Ghanbari, E., Obtaining an Energy Storing Building Material by Direct Incorporation of an Organic-Phase Change Material in Gypsum Wallboard. Sol Energ Mater 1991, 22 (2-3), 231-242.

    15.Hittle, D. C. Phase Change Materials in Floor Tiles for Thermal Energy Storage.; USA, August 2002, 2002.

    16.C. Castellón, M. N., J. Roca, M. Medrano, L.F. Cabeza In Microencapsulated phase changing materials (PCM) for building applications, the 10th International Conference on Thermal Energy Storage, Stockton, Yersey, May 31, 2006; Stiles, L., Ed. Stockton, Yersey, 2006; pp pp. 1-9.

    17.D.P. Bentz, R. T., Potential application of phase change materials in concrete technology. Cement & Concrete Composites 2007, 29, 527-532.

    18.Energy Conservation through Energy Storage Programme; International Energy Agency IEA: Annual Report 2010; p 15.

    19.Heim D, C. J., Numerical modeling and thermal simulation of phase change materials within ESP-r. In Eighth International IBPSA Conference, Eindhoven, Netherlands, 2003.

    20.Bony, J.; Citherlet, S., Numerical model and experimental validation of heat storage with phase change materials. Energ Buildings 2007, 39 (10), 1065-1072.

    21.Gowreesunker, B. L.; Tassou, S. A., Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces. Build Environ 2013, 59, 612-625.

    22.Hariri, A. S.; Ward, I. C., A Review of Thermal Storage-Systems Used in Building Applications. Build Environ 1988, 23 (1), 1-10.

    23.Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S., A review on phase change energy storage: materials and applications. Energ Convers Manage 2004, 45 (9-10), 1597-1615.

    24.Khudhair, A. M.; Farid, M. M., A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energ Convers Manage 2004, 45 (2), 263-275.

    25.Kenisarin, M.; Mahkamov, K., Solar energy storage using phase change materials. Renew Sust Energ Rev 2007, 11 (9), 1913-1965.

    26.Zhang, Y. P.; Zhou, G. B.; Lin, K. P.; Zhang, Q. L.; Di, H. F., Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build Environ 2007, 42 (6), 2197-2209.

    27.Pasupathy, A.; Velraj, R.; Seeniraj, R. V., Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sust Energ Rev 2008, 12 (1), 39-64.

    28.Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D., Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009, 13 (2), 318-345.

    29.Zhu, N.; Ma, Z. J.; Wang, S. W., Dynamic characteristics and energy performance of buildings using phase change materials: A review. Energ Convers Manage 2009, 50 (12), 3169-3181.

    30.Wang, X.; Zhang, Y. P.; Xiao, W.; Zeng, R. L.; Zhang, Q. L.; Di, H. F., Review on thermal performance of phase change energy storage building envelope. Chinese Sci Bull 2009, 54 (6), 920-928.

    31.Baetens, R.; Jelle, B. P.; Gustavsen, A., Phase change materials for building applications: A state-of-the-art review. Energ Buildings 2010, 42 (9), 1361-1368.

    32.Cabeza, L. F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernandez, A. I., Materials used as PCM in thermal energy storage in buildings: A review. Renew Sust Energ Rev 2011, 15 (3), 1675-1695.

    33.Peippo, K.; Kauranen, P.; Lund, P. D., A Multicomponent Pcm Wall Optimized for Passive Solar Heating. Energ Buildings 1991, 17 (4), 259-270.

    34.Onishi, J.; Soeda, H.; Mizuno, P., Numerical study on a low energy architecture based upon distributed heat storage system. Renew Energ 2001, 22 (1-3), 61-66.

    35.Heim, D.; Clarke, J. A., Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r. Energ Buildings 2004, 36 (8), 795-805.

    36.Carbonari, A.; De Grassi, M.; Di Perna, C.; Principi, P., Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls. Energ Buildings 2006, 38 (5), 472-483.

    37.Ahmad, M.; Bontemps, A.; Sallee, H.; Quenard, D., Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energ Buildings 2006, 38 (6), 673-681.

    38.De Grassi, M.; Carbonari, A.; Palomba, G., A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls. Build Environ 2006, 41 (4), 448-485.

    39.Darkwa, K.; O'Callaghan, P. W., Simulation of phase change drywalls in a passive solar building. Appl Therm Eng 2006, 26 (8-9), 853-858.

    40.Kuznik, F.; Virgone, J.; Noel, J., Optimization of a phase change material wallboard for building use. Appl Therm Eng 2008, 28 (11-12), 1291-1298.

    41.Pasupathy, A.; Athanasius, L.; Velraj, R.; Seeniraj, R. V., Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Appl Therm Eng 2008, 28 (5-6), 556-565.

    42.Zhou, G. B.; Zhang, Y. P.; Lin, K. P.; Xiao, W., Thermal analysis of a direct-gain room with shape-stabilized PCM plates. Renew Energ 2008, 33 (6), 1228-1236.

    43.Zhang, Y. P.; Lin, K. P.; Jiang, Y.; Zhou, G. B., Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard. Energ Buildings 2008, 40 (9), 1771-1779.

    44.Kuznik, F.; Virgone, J.; Johannes, K., Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energ Buildings 2010, 42 (7), 1004-1009.

    45.Borreguero, A. M.; Sanchez, M. L.; Valverde, J. L.; Carmona, M.; Rodriguez, J. F., Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content. Appl Energ 2011, 88 (3), 930-937.

    46.Py, X.; Olives, R.; Mauran, S., Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Tran 2001, 44 (14), 2727-2737.

    47.Wang, M.; Kang, Q. J.; Pan, N., Thermal conductivity enhancement of carbon fiber composites. Appl Therm Eng 2009, 29 (2-3), 418-421.

    48.Salyer, I. O.; Sircar, A. K., Phase-Change Materials for Heating and Cooling of Residential Buildings and Other Applications. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Vols 1-6 1990, 236-243.

    49.Tyagi, V. V.; Buddhi, D., Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol Energ Mat Sol C 2008, 92 (8), 891-899.

    50.Mehling H, C. L., Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer: 2008.

    51.Hawes, D. W.; Feldman, D.; Banu, D., Latent-Heat Storage in Building-Materials. Energ Buildings 1993, 20 (1), 77-86.

    52.Tyagi, V. V.; Kaushik, S. C.; Tyagi, S. K.; Akiyama, T., Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sust Energ Rev 2011, 15 (2), 1373-1391.

    53.RUBITHERM ® Technologies. “Product” Retrieved August 1, 2013 (http://www.rubitherm.de/english/index.htm)..

    54.B.L. Gowreesunker, S. A. T., M. Kolokotroni, Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energ Buildings 2012, 47, 353-359.

    55.ANSYS FLUENT Theory Guide. ANSYS: 2011.

    56.Yu, J. H.; Yang, C. Z.; Tian, L. W.; Liao, D., A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Appl Energ 2009, 86 (11), 2520-2529.

    57.Chen, Q. Y., Ventilation performance prediction for buildings: A method overview and recent applications. Build Environ 2009, 44 (4), 848-858.

    58.Zhou, G. B.; Zhang, Y. P.; Wang, X.; Lin, K. P.; Xiao, W., An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating. Sol Energy 2007, 81 (11), 1351-1360.

    59.Ozel, M., Thermal performance and optimum insulation thickness of building walls with different structure materials. Appl Therm Eng 2011, 31 (17-18), 3854-3863.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE