簡易檢索 / 詳目顯示

研究生: 柳克穎
Liu, Ker-Yin
論文名稱: 烷基與芳基官能化梯狀聚苯胺衍生物之合成與鑑定
Synthesis and Characterization of Alkyl- and Aryl-Functionalized N-embedded Polyacene Ladder Polymer Derivatives from Polyaniline
指導教授: 韓建中
Han, Chien-Chung
口試委員: 蔡易州
Tsai, Yi-Chou
李志聰
Lee, Jyh-Tsung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 130
中文關鍵詞: 梯狀高分子聚苯胺同步還原取代反應
外文關鍵詞: ladder polymer, polyaniline, concurrent reduction and substitution reaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電高分子是一主鏈由共軛系統組成的高分子,具有高導電度的性質也兼具傳統高分子可塑性佳、質地輕的優點,引發學界與產業界的矚目,在有機發光二極體、太陽能電池等不同應用領域上有極大的潛力。
    在導電高分子中,聚苯胺具有高導電度且於空氣中有良好的穩定性,再加上單體價格便宜、合成容易及可調控的氧化態等優點而成為科學家研究的焦點。然而,聚苯胺本身不易被有機溶劑溶解,產生在實際應用上的瓶頸。另外文獻報導也指出其在高電壓下會有電化學降解或化學降解現象,至今仍未有良好的解決方式。因此,在實驗室學長的努力下開發出利用聚苯胺與硝基烴類進行四正丁基氟化銨 (Tetra-n-butylammonium fluoride, TBAF) 輔助的同步還原取代反應 (concurrent reduction and sub-stitution, CRS) 和分子內環化反應,期望利用環化反應穩定其結構,使其具有良好的抗電化學降解能力。我們發現透過在多次循環反應下會得到一具有連續含氮稠環結構主鏈的完全共軛梯狀高分子 (fully conjugated ladder polymers , cLPs)。雖然cLPs具有一由π共軛組成的連續稠環共平面骨架,對於電子傳遞上有正向的影響,但也造成有極強的π-π堆積交互作用 (π-π stacking interactions),進而導致溶解能力低下,故我們設計了多種具烷基與芳基的硝基烴類進行CRS合環反應,將這些烷基與芳基引入並官能化梯狀高分子,利用這些官能基製造出立體障礙來減弱其π-π堆積交互作用造成溶解能力低下的影響。
    我們利用UV-vis.、FTIR及XPS光譜鑑定,確定CRS反應能夠將不同官能基的硝基烴類引入到聚苯胺上,也透過溶解度測試發現具有4-溴苯基梯狀聚苯胺衍生物PAc-4BBz和具萘基的聚苯胺衍生物PAc-Naph具有比聚苯胺還要更好的溶解能力,另外嘗試製作高分子薄膜並觀察其表面特性,並進行電化學分析發現其在乙腈溶液系統下具有寬的工作電壓特性 (-0.1-1.5 V vs. SCE),在導電度方面也嘗試利用酸摻雜或n-type摻雜,都發現能夠大幅提高其導電度,也進一步透過 TGA量測了解其熱穩定性,這些測試有助於後續官能基的開發改良。


    Conducting polymers have good electrical conductivity due to their highly conjugated π-bond system. They possess the advantages of high conductivity, low density and flexibility. These have gained increasing attention owing to their high potential as alternatives to their inorganic counterparts, leading to significant fundamental and practical research efforts.
    Polyaniline is a kind of conducting polymer shows good stability in ambient environment , easy synthesis and well-control oxidation state with low-cost monomers. However, the application of polyaniline is limited via poor solubility and electrochemical degradation under high voltage. In order to solve these problems, we developed a TBAF-assisted concurrent reduction and substitution (CRS) and cyclization reaction by using polyaniline and nitro compounds. We expect that a cyclized derivative can stabilize the structure and enhance the resistance to electrochemical degradation. We found that fully conjugated ladder polymers (cLPs) with a continuous nitrogen-containing fused-ring structure backbone can be obtained by multiple cycling reaction. cLPs have extraordinary chemical and electrochemical stability due to fused backbone. However, the strong π-π stacking interactions of fused backbone cause disadvantage of poor solubility. Therefore, we designed a variety of nitro compounds with alkyl and aryl groups for CRS cyclization reactions, introducing and functionalizing alkyl and aryl groups into ladder polymers. We expect that can fabricate steric barriers to weaken π-π stacking interaction and solve the low solubility problem.
    We verified that CRS reaction can introduce different functional nitro compounds into polyaniline via UV-Vis, FTIR and XPS spectroscopy. We found that PAc-4BBz, the ladder-structured polyaniline derivative with pendant 4-bromophneyl group and PAc-Naph, the ladder-structured polyaniline derivative with pendant Naphthyl group show better solubility than polyaniline. Moreover, we also made them as thin films and analyzed their surface properties. We utilized these films for electrochemical analysis and find that they have widely working voltage range (-0.1-1.5 V vs. SCE) in acetonitrile solvent system with good electrochemical stability. The conductivity of the acid doped and n-type doped polymer films are thousands times better than undoped polymer films. Finally, we tested thermogravimetric analysis to profile the thermal stability of these functionalized ladder polymers. These series tests help us to develop and improve more effective functionalization on polyaniline.

    摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 編號、縮寫、結構與命名對照表 XII 第一章 文獻回顧 1 1-1 前言 2 1-2 導電高分子簡介 3 1-2.1 導電高分子 3 1-2.2 導電高分子的導電原理 5 1-3 聚苯胺簡介 6 1-4 聚苯胺的合成 7 1-4.1 化學法聚合 7 1-4.2 電化學法聚合 7 1-5 聚苯胺的性質鑑定 8 1-5.1 UV-vis光譜研究 8 1-5.2 XPS光譜研究 10 1-5.3 IR 光譜研究 11 1-5.4 電化學研究 12 1-6 聚苯胺衍生物的研究 15 1-6.1 合成具烷基取代基苯胺單體經氧化聚合之聚苯胺衍生物 15 1-6.2 以同步還原取代反應 (concurrent reduction and substitution reaction, CRS) 合成聚苯胺衍生物 16 1-6.3 完全共軛梯狀高分子 18 1-7 研究動機 20 第二章 實驗內容 21 2-1 藥品 22 2-2 儀器量測與樣品製備 24 2-2.1 核磁共振光譜 (Nuclear magnetic resonance, NMR) 24 2-2.2 紫外-可見光光譜 (Ultraviolet-visible spectrometer, UV-vis) 24 2-2.3 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectrometry, FTIR) 25 2-2.4 X光光電子能譜 ( X-ray photoelectron spectroscopy, XPS) 25 2-2.5 循環伏安法 (Cyclic voltammetry, CV) 26 2-2.6 光學顯微鏡 (Optical microscope) 26 2-2.7 熱重分析 (Thermogravimetric analyses, TGA) 27 2-2.8 噵電儀 (Conductivity measurement equipment) 27 2-2.9 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 28 2-3 實驗合成 29 2-3.1 PAc-Et合成 29 2-3.2 PAc-Prop合成 30 2-3.3 PAc-Bu合成 32 2-3.4 PAc-Pent合成 34 2-3.5 PAc-Unde合成 36 2-3.6 PAc-Bz合成 38 2-3.7 PAc-4BBz合成 40 2-3.8 PAc-Naph合成 43 2-3.9 PAc-Anth合成 46 第三章 結果與討論 49 3-1 光譜研究 50 3-1.1 UV-Vis 光譜分析 50 3-1.2 FTIR光譜分析 52 3-1.3 XPS光譜分析 55 3-2 溶解度測試 74 3-3 薄膜製作與表面分析 78 3-4 電化學分析 83 3-5 導電度測試 93 3-6 熱重分析 95 第四章 結論 96 第五章 參考文獻 98 附錄 104

    1. Angeli, A.; Alessandri, L. Gazzetta 1916, 3, 283.
    2. McNeill, R.; Siudak, R.; Wardlaw, J.; Weiss, D. Australian Journal Chem. 1963, 16 (6), 1056-1075.
    3. Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2 (2), 231-244.
    4. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc. Chem. Commun. 1977, 16, 578-580.
    5. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. Am. Chem. Soc 1978, 100 (3), 1013-1015.
    6. Vernitskaya, T. V.; Efimov, O. N. Russ. Chem. Rev. 1997, 66, 443-457.
    7. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
    8. Kovacic, P.; Kyriakis, A. Tetrahedron lett. 1962, 3 (11), 467-469.
    9. Macdiarmid, A. G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L. D.; Wu, S. W.; Yaniger, S. I. Mol. Cryst. Liq. Cryst. 1985, 121 (1-4), 173-180.
    10. Letheby, H. J. Chem. Soc. 1862, 15 (0), 161-163.
    11. Green, A. G.; Woodhead, A. E. J. Chem. Soc., Trans. 1910, 97 (0), 2388-2403.
    12. Langer, J. Solid State Commun. 1978, 26 (11), 839-844.
    13. Wallace, G. G.; Spinks, G. M.; Kane-Maguire, L. A. P.; Teasdale, P. R. Conductive Electroactive Polymers: Intelligent Polymer Systems, 2009, CRC Press ,London.
    14. Zotti, G.; Cattarin, S.; Comisso, N. J. Electroanal. Chem. Interfacial Electrochem. 1987, 235 (1), 259-273.
    15. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113 (1-2), 19-22.
    16. Lu, F. L.; Wudl, F.; Nowak, M.; Heeger, A. J. J. Am. Chem. Soc 1986, 108 (26), 8311-8313.
    17. Stafström, S.; Brédas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiarmid, A. G. Phys. Rev. Lett. 1987, 59 (13), 1464-1467.
    18. Salaneck, W. R.; Lundström, I.; Hjertberg, T.; Duke, C. B.; Conwell, E.; Paton, A.; MacDiarmid, A. G.; Somasiri, N. L. D.; Huang, W. S.; Richter, A. F. Synth. Met. 1987, 18 (1-3), 291-296.
    19. Kang, E. T.; Neoh, K. G.; Khor, S. H.; Tan, K. L.; Tan, B. T. G. J. Chem. Soc. Chem. Commun. 1989, (11), 695-697.
    20. Kumar, S. N.; Gaillard, F.; Bouyssoux, G.; Sartre, A. Synth. Met. 1990, 36 (1), 111-127.
    21. Clark, D. T.; Dilks, A. J. Polym. Sci. A 1976, 14 (3), 533-542.
    22. Neugebauer, H.; Neckel, A.; Sariciftci, N. S.; Kuzmany, H. Synth. Met. 1989, 29, E185.
    23. Sariciftci, N. S.; Kuzmany, H.; Neckel, A.; Neugebauer, H.; Bartonek, M. Synth. Met. 1989, 29, E193.
    24. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24 (3), 231-238.
    25. Huang, W.-S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82 (8), 2385-2400.
    26. Watanabe, A.; Mori, K.; Mikuni, M.; Nakamura, Y.; Matsuda, M. Macromolecules 1989, 22 (8), 3323-3327.
    27. Kabumoto, A.; Shinozaki, K.; Watanabe, K.; Nishikawa, N. Synth. Met. 1988, 26, 349.
    28. Kobayashi, T.; Yoneyama, H.; Tamura, H. J. Electoanal. Chem. 1984, 177, 281.
    29. Garcia, B.; Fusalba, F.; Bélanger, D. Can. J. Chem. 1997, 75 (11), 1536-1541.
    30. Daifuku, H.; Kawagoe, T.; Yamamoto, N.; Ohsaka, T.; Oyama, N. J. Electroanal. Chem. Interfacial Electrochem. 1989, 274 (1), 313-318.
    31. Desilvestro, J.; Scheifele, W.; Haas, O. J. Electrochem. Soc. 1992, 139 (10), 2727-2736.
    32. Fiordiponti, P.; Pistoia, G. Electrochim. Acta 1989, 34 (2), 215-221.
    33. Lapkowski, M.; Berrada, K.; Quillard, S.; Louarn, G.; Lefrant, S.; Pron, A. Macromolecules 1995, 28 (4), 1233-1238.
    34. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93 (1), 495-499.
    35. Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22 (2), 649-653.
    36. Chevalier, J. W.; Bergeron, J. Y.; Dao, L. H. Macromolecules 1992, 25 (13), 3325-3331.
    37. Han, C.-C.; Hong, S.-P.; Yang, K.-F.; Bai, M.-Y.; Lu, C.-H.; Huang, C.-S. Macromolecules 2001, 34 (3), 587-591.
    38. Han, C.-C.; Yang, K.-F.; Hong, S.-P.; Balasubramanian, A.; Lee, Y.-T. J. Polym. Sci. A 2005, 43 (9), 1767-1777.
    39. Han, C.-C.; Balakumar, R.; Thirumalai, D.; Chung, M.-T. Org. Biomol. Chem. 2006, 4 (18), 3511-3516.
    40. Lee, J.; Kalin, A. J.; Yuan, T.; Al-Hashimi, M.; Fang, L. Chem. Sci. 2017, 8 (4), 2503-2521.
    41. Grozema, F. C.; van Duijnen, P. T.; Berlin, Y. A.; Ratner, M. A.; Siebbeles, L. D. A. J. Phys. Chem. B 2002, 106 (32), 7791-7795.
    42. Prins, P.; Grozema, F. C.; Schins, J. M.; Patil, S.; Scherf, U.; Siebbeles, L. D. A. Phys. Rev. Lett. 2006, 96 (14), 146601.
    43. Samiullah, M.; Moghe, D.; Scherf, U.; Guha, S. Phys. Rev. B 2010, 82 (20), 205211.
    44. Yu, L.; Chen, M.; Dalton, L. R. Chem. Mater. 1990, 2 (6), 649-659.
    45. Van Deusen, R. L. J. Polym. Sci. B 1966, 4 (3), 211-214.
    46. Scherf, U. J. Mater. Chem. 1999, 9 (9), 1853-1864.
    47. Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28 (17), 1676-1702.
    48. Wu, Y.; Li, J.; Fu, Y.; Bo, Z. Org. Lett. 2004, 6 (20), 3485-3487.
    49. Piok, T.; Gamerith, S.; Gadermaier, C.; Plank, H.; Wenzl, F. P.; Patil, S.; Montenegro, R.; Kietzke, T.; Neher, D.; Scherf, U.; Landfester, K.; List, E. J. W. Adv. Mater. 2003, 15 (10), 800-804.
    50. Grem, G.; Leising, G. Synth. Met. 1993, 57 (1), 4105-4110.
    51. Leising, G.; Tasch, S.; Meghdadi, F.; Athouel, L.; Froyer, G.; Scherf, U. Synth. Met. 1996, 81 (2), 185-189.
    52. Durban, M. M.; Kazarinoff, P. D.; Segawa, Y.; Luscombe, C. K. Macromolecules 2011, 44 (12), 4721-4728.
    53. Babel, A.; Jenekhe, S. A. Adv. Mater. 2002, 14 (5), 371-374.
    54. Chen, X. L.; Bao, Z.; Schön, J. H.; Lovinger, A. J.; Lin, Y.-Y.; Crone, B.; Dodabalapur, A.; Batlogg, B. Appl. Phys. Lett. 2001, 78 (2), 228-230.
    55. Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc 2003, 125 (45), 13656-13657.
    56. Briseno, A. L.; Mannsfeld, S. C. B.; Shamberger, P. J.; Ohuchi, F. S.; Bao, Z.; Jenekhe, S. A.; Xia, Y. Chem. Mater. 2008, 20 (14), 4712-4719.
    57. McPake, C. B.; Murray, C. B.; Sandford, G. ChemSusChem 2012, 5 (2), 312-319.
    58. Gao, F.; Ji, P.; Cheng, J.-P. J. Org. Chem. 2018, 83 (24), 14962-14968.
    59. Gündüz, T.; Gündüz, N.; Şakiyan, İ. Synth. React. Inorg. Met.-Org. Chem. 1994, 24 (4), 519-524.
    60. Walvoord, R. R.; Kozlowski, M. C. Tetrahedron lett. 2015, 56 (23), 3070-3074.
    61. Fabbrini, M. G.; Cirri, D.; Pratesi, A.; Ciofi, L.; Marzo, T.; Guerri, A.; Nistri, S.; Dell'Accio, A.; Gamberi, T.; Severi, M.; Bencini, A.; Messori, L. Chem. Med. Chem. 2019, 14 (1), 182-188.
    62. Kim, N. Y.; Baek, J. H.; Chang, S.-K. Tetrahedron lett. 2019, 60 (1), 59-62.
    63. Shu, C.; Chen, C.-B.; Chen, W.-X.; Ye, L.-W. Org. Lett. 2013, 15 (21), 5542-5545.
    64. Mitchell, M. B.; Smith, G. R.; Guillory, W. A. J. Chem. Phys 1981, 75 (1), 44-48.
    65. Coates, J. Encyclopedia of Analytical Chemistry 2000, 10815–10837.
    66. Roper, K. A.; Lange, H.; Polyzos, A.; Berry, M. B.; Baxendale, I. R.; Ley, S. V. Beilstein J. Org. Chem. 2011, 7, 1648-1655.
    67. Langhoff, S. R.; Bauschlicher, C. W.; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J. J. Phys. Chem. A 1998, 102 (9), 1632-1646.
    68. Beamson, G.; Briggs, D. J. Chem. Educ. 1993, 70 (1), A25.
    69. Naumkin, A. V.; Kraut-Vass, A.; Gaarenstroom, S. W.; Powell, C. J., NIST X-ray Photoelectron Spectroscopy Database 2012.
    70. Pekmez, N.; Pekmez, K.; Yıldız, A. J. Electroanal. Chem 1994, 370 (1), 223-229.
    71. Komorsky-Lovrič, Š.; Mirceski, V.; Scholz, F. Microchim. Acta 1999, 132, 67-77.

    QR CODE