研究生: |
江宛蔚 Chiang, Wan-Wei |
---|---|
論文名稱: |
結合汲極延伸電晶體之電壓可調式神經刺激器 A Voltage-Tunable Neural Stimulator Using Drain-Extended Transistors |
指導教授: |
陳新
Chen, Hsin |
口試委員: |
鄭桂忠
Kea-Tiong Tang 彭盛裕 Sheng-Yu Peng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 神經刺激器 、電荷幫浦 、汲極延伸金氧半場效電晶體 、深層腦部電刺激 |
外文關鍵詞: | neural stimulator, charge pump, drain-extended MOS, deep brain stimulation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症是一種常見的神經失調疾病,由於神經細胞的退化,使得神經的運動調節功能喪失,導致患者產生身體不規律顫抖、運動遲緩等症狀。深層腦部電刺激是將電極植入病患腦部的特定區域,藉由提供特定頻率的電刺激,來有效地抑制腦部不正常的神經電訊號或刺激神經細胞活性。
近幾年來,人們致力於發展植入式腦機介面系統。腦機介面系統結合了記錄單元與刺激單元,藉由記錄單元偵測腦中異常訊號來進行病情診斷,並利用刺激器提供相對應的電刺激訊號來進行深層腦部電刺激,以抑制腦部不正常放電,而其無線傳輸方式的設計則可避免裝置穿過病患皮膚可能造成的感染。植入式裝置必須操作在低電壓下,以符合低功耗的需求,但仍須產生高電壓以供刺激,因此在系統中需要升壓電路來將低供應電壓轉換成高電壓。
本論文提出一個應用於腦機介面中,可提供深層腦部電刺激治療的電壓可調式神經刺激器。採用電荷幫浦作為升壓電路,並藉由回授機制調整輸出電壓,可藉由5 位元的電壓控制訊號來改變刺激電壓,在僅需1V供應電源的情況下,可提供3V~8V的輸出電壓。此架構的優勢在於其並非僅調整刺激輸出的電壓,而是調整升壓電路所產生的電壓,藉由電路自行依刺激所需升壓,可節省升壓過程中的功耗,而達到省電的效果。此外,本論文使用可整合於標準製程中的耐高壓電晶體─汲極延伸金氧半場效電晶體,來做為刺激電壓輸出端的切換開關,以提供雙向的輸出。
本系統於TSMC 0.18μm CMOS 製程實現,經由量測驗證晶片並與模擬結果比較,分析並提出更進一步的改良方式。
Parkinson’s disease (PD) is a common neurodegenerative disorder. The motor symptoms such as tremor and bradykinesia result from the degeneration of dopaminergic neurons in the substantia nigra. Deep brain stimulation (DBS) is a new therapy for Parkinson’s disease. By implanting electrodes to particular regions of the brain and giving electrical impulses with specific frequency, DBS can suppress the abnormal electrical impulses and induce neuronal activity.
The brain machine interface (BMI) consisting of both recording unit and stimulator are well developed. BMI can record and detect the abnormal signal in brain of the patient, and then, give the corresponded stimulation. Without wires penetrating animal bodies, the wireless implanted device can prevent patient from infection, while the operating voltage should be lower to reduce power consumption. However, the stimulator has to provide high voltage for effective stimulation, so a voltage multiplier is indispensable.
This work proposes a voltage-tunable stimulator combined with CMOS-compatible high-voltage transistors, i.e. drain-extended MOS (DEMOS). With a supply voltage of 1V, the output voltage can vary from 3V to 8V, according to 5-bit digital control signal. This design has low power consumption because the charge pump circuit adjusts output voltage automatically. Therefore, the proposed stimulator is suitable for applications in implanted brain machine interface. Applying DEMOS allows it to be integrated with the BMI system in one chip. Two test chips are implemented in a TSMC 0.18μm CMOS process to verify the proposed stimulator design.
[1] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. Perez Velazquez, and R. Genov, "64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator," IEEE J. Solid-State Circuits, vol. 48, pp. 2494-2510, 2013.
[2] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, "A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface," IEEE J. Solid-State Circuits, vol. 46, pp. 731-745, 2011.
[3] R. Hyo-Gyuem, J. Jaehun, J. A. Fredenburg, S. Dodani, P. Patil, and M. P. Flynn, "A wirelessly powered log-based closed-loop deep brain stimulation SoC with two-way wireless telemetry for treatment of neurological disorders," in Symposium on VLSI Circuits (VLSIC), 2012, pp. 70-71.
[4] A. Merola, M. Zibetti, S. Angrisano, L. Rizzi, V. Ricchi, C. A. Artusi, et al., "Parkinson's disease progression at 30 years: a study of subthalamic deep brain-stimulated patients," Brain, vol. 134, pp. 2074-2084, Jul 2011.
[5] Handbook of Parkinson's Disease, 3rd ed. New York: Marcel Dekker, 2003.
[6] H. M. Khoo, H. Kishima, K. Hosomi, T. Maruo, N. Tani, S. Oshino, et al., "Low-frequency subthalamic nucleus stimulation in Parkinson's disease: A randomized clinical trial," Movement Disorders, vol. 29, pp. 270-274, Feb 2014.
[7] Smart power ICs: Technologies and Applications, 2nd ed. vol. 6: Springer, 2002.
[8] A. W. Ludikhuize, "A review of RESURF technology," in Proc. The 12th International Symposium on Power Semiconductor Devices and ICs, 2000, pp. 11-18.
[9] J. C. Mitros, C.-Y. Tsai, H. Shichijo, M. Kunz, A. Morton, D. Goodpaster, et al., "High-voltage drain extended MOS transistors for 0.18um logic CMOS process," Electron Devices, IEEE Transactions on, vol. 48, pp. 1751-1755, 2001.
[10] X. L. Han and C. H. Xu, "Design and characterization of STI compatible high-voltage NMOS and PMOS devices in standard CMOS process," in Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, 2007, pp. 175-178.
[11] Y. Q. Li, C. A. T. Salama, M. Seufert, P. Schvan, and M. King, "Design and characterization of submicron BiCMOS compatible high-voltage NMOS and PMOS devices," IEEE Trans. Electron Devices, vol. 44, pp. 331-338, Feb 1997.
[12] 陳韋霖, "具有負載適應性之抑制癲癇發作電流刺激器設計," Master, 電子研究所, 國立交通大學, 2010.
[13] G. Palumbo and D. Pappalardo, "Charge Pump Circuits: An Overview on Design Strategies and Topologies," Circuits and Systems Magazine, IEEE, vol. 10, pp. 31-45, 2010.
[14] K. Ming-Dou and C. Shih-Lun, "On-Chip High-Voltage Charge Pump Circuit in Standard CMOS Processes With Polysilicon Diodes," in Asian Solid-State Circuits Conference, 2005, 2005, pp. 157-160.
[15] E. T. S. W. J. D. Cockcroft, "Experiments with High Velocity Positive Ions. (I) Further Developments in the Method of Obtaining High Velocity Positive Ions," Proc. R. Soc. Lond. A, vol. 136, pp. 619-630, 1932.
[16] J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," IEEE J. Solid-State Circuits, vol. 11, pp. 374-378, 1976.
[17] J.-T. Wu, Y.-H. Chang, and K.-L. Chang, "1.2 V CMOS switched-capacitor circuits," in IEEE International Solid-State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996, pp. 388-389.
[18] J.-T. Wu and K.-L. Chang, "MOS charge pumps for low-voltage operation," IEEE J. Solid-State Circuits, vol. 33, pp. 592-597, 1998.
[19] P. Favrat, P. Deval, and M. J. Declercq, "A high-efficiency CMOS voltage doubler," IEEE J. Solid-State Circuits, vol. 33, pp. 410-416, 1998.
[20] K.-S. Min, Y.-H. Kim, J.-H. Ahn, J.-Y. Chung, and T. Sakurai, "CMOS charge pumps using cross-coupled charge transfer switches with improved voltage pumping gain and low gate-oxide stress for low-voltage memory circuits," in IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002. , 2002, pp. V-545-V-548 vol.5.
[21] U. Bihr, T. Ungru, H. Xu, J. Anders, J. Becker, and M. Ortmanns, "A bidirectional neural interface with a HV stimulator and a LV neural amplifier," in IEEE International Symposium on Circuits and Systems, 2013. ISCAS 2013., 2013, pp. 401-404.
[22] M. Ghovanloo and K. Najafi, "A compact large Voltage-compliance high output-impedance programmable current source for implantable microstimulators," IEEE Trans. Biomedical Engineering, vol. 52, pp. 97-105, 2005.
[23] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, "A high-voltage output driver in a 2.5-V 0.25um CMOS technology," IEEE J. Solid-State Circuits, vol. 40, pp. 576-583, 2005.
[24] C. Y. Tseng, S. C. Chen, T. K. Shia, and P. C. Huang, "An Integrated 1.2V-to-6V CMOS Charge-Pump for Electret Earphone," in IEEE Symposium on VLSI Circuits, 2007, pp. 102-103.
[25] C. Wang, M. O. Ahmad, and M. N. S. Swamy, "A CMOS current-controlled oscillator and its applications," in IEEE International Symposium on Circuits and Systems, 2003. ISCAS 2003., 2003, pp. I-793-I-796 vol.1.