研究生: |
拉 麒 RACHIT, AGARWAL |
---|---|
論文名稱: |
N-水楊基-L-叔亮胺酸衍生的手性氧釩錯合物催化α-和β-酮醯胺的不對稱還原 Asymmetric Reduction of α- and β-Keto Amides Catalyzed By Chiral Oxovanadium Complexes derived from N-Salicylidene-L-tert-Leucine |
指導教授: |
陳建添
Chen, Chien-Tien |
口試委員: |
陳貴通
Tan, Kui-Thong 林民生 Hayashi, Tamio 吳學亮 Wu, Hsyueh-Liang 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 451 |
中文關鍵詞: | 不對稱還原 、手性氧釩錯合物 、α-酮醯胺 、β-酮醯胺 、α-取代 β-酮醯胺 |
外文關鍵詞: | Asymmetric reduction, Chiral Oxo-Vanadium Complexes, α--keto amide, β-keto amide, α-substituted β-keto amide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室以先前開發的3,5-雙取代-N-叔亮胺酸之手性氧釩錯合物,藉由頻哪醇硼烷 (pinacolborane, HBpin) 及兒茶酚硼烷(catecolborane, HBcat) 不對稱催化還原 α-酮基醯胺,擁有不錯的效率。在十二種不同溶劑及六種不同的C3、C5取代的催化劑中,以C3為叔丁基取代,C5為溴取代的氧釩錯合物 1a’,在 −20 ℃ 下以甲苯為溶劑可得到最佳結果。在使用高效的頻哪醇硼烷作為不對稱催化還原試劑,得到產率 44–90% ,鏡像選擇性74–94% (R);若使用兒茶酚硼烷作為不對稱催化還原試劑,則可得到產率 69–99%,鏡像選擇性60–90% (S)。在預測的過度態中,α-酮基醯胺會因為酮類的羰基與醯胺的氫形成分子內氫鍵,而呈現s-trans構型。因此,頻哪醇硼烷的氫陰離子會從酮類的Si-face攻打,進而還原成R-構型的醇類產物。相反的,因為兒茶酚硼烷的苯環與受質的苯甲醯基片段會產生 π-π 交互作用力,受質會傾向s-cis構型,進而生成S構型的醇類產物。
在第二部分中,我們將受質改為 N-苯甲基-β-酮基醯胺。在九種不同溶劑、三種不同的醇類添加物及四種不同的C3、C5取代的催化劑中,以C3為 2,5-二甲基苯基取代,C5為溴取代的水楊酸衍生之氧釩錯合物 1d,在 −20 ℃ 下以四氫呋喃為溶劑,以頻哪醇硼烷作為還原劑,並搭配叔丁醇做為添加物可得到最佳結果。對應的β-S-羥基醯胺產物,得到產率43–92% ,鏡像選擇性79–99% 。而合成可做為度洛西汀的前驅物,亦可得到產率45% 及鏡像選擇性90% 。對此我們提出兩種還原的過渡態。在模型一中,立體障礙大的頻哪醇硼烷會鍵結在與釩相連接的甲氧基上,並從Re-face提供氫陰離子,得到S構型的醇類產物。另一方面,在模型二中,頻哪醇硼烷會先與V=O鍵結作用,使得氫陰離子從Re-face攻擊在赤道向與釩鍵結的羰基,得到S-構型的醇類產物。
在最後一部分,我們將受質延伸為α-甲基-β-酮基醯胺。在十種不同溶劑、五種不同的添加物及九種不同的C3、C5取代的催化劑中,以氧釩錯合物 1d,在 −20 ℃ 下以等比例之四氫呋喃-丙酮混合溶劑,頻哪醇硼烷作為還原劑,可得到最佳結果為產率70% 、鏡像選擇性91% 及非對映異構選擇性99:1 (同向:反向)。此外,在更具挑戰性的受質α-苯基-β-酮基醯胺,其還原產物α-苯基-β-羥基醯胺得到產率66% 及鏡像選擇性89% 。我們預測以上兩種受質與β-酮基醯胺有類似的過渡態,頻哪醇硼烷會與釩相連接的甲氧基或V=O鍵結作用,使得氫陰離子從Re-face攻擊在赤道向與釩鍵結的羰基,得到高度同向選擇性之α-甲基(或苯基)-β-羥基醯胺。
We have developed an efficient system for the complementary asymmetric reduction of α-ketobenzylamide with pinacolborane (HBPin) and catecholborane (HBCat) catalyzed by chiral oxo-vanadium (V) methoxides complexes derived from 3,5-disubstituted-N-salicylidene-tert-leucine. Among twelve different solvents and six different C-3, C-5 substituted catalysts examined, the use of C3 t-butyl and C-5 Br (1a') catalyst in toluene at −20 °C afforded the best results. An efficient reagent based complementary enantioselective reduction was afforded in 44–90% yield with 74–94% R-isomer using HBPin and 69–99% yield with 60–90% S-isomer using HBCat. In the proposed transition state, the α-ketoamide adopted an s-trans conformation with an internal H-bonding between the ketone carbonyl and the amide H so that the bulky pinacolborane would deliver the hydride from Si-face of the ketone moiety to give the resulting alcohol in R-configuration. Conversely, an s-cis conformation would be preferred in the reduction by catecholborane in view of the favourable - interaction between the benzoyl unit in the substrate and the benzene ring in HBCat to give the resulting alcohol in S-configuration.
In Part 2, we changed the substrate class to N-benzyl-β-ketoamides. Among nine different solvents, three different alcohol additives, and four different catalysts examined, the use of 1d complex bearing 3-(2,5-dimethylphenyl),5-Br on salicylidene template and HBPin as reducing agent in tetrahydrofuran (THF) with a t-BuOH additive led to the best results at −20 °C. The corresponding β-S-hydroxyamides furnished with 43–92% yields and 79–99% ees. A precursor to duloxetine drug has been synthesized in 45% yield and 90 % ee. Two reductant-directed favourable transition state has been proposed, in mode I the bulky HBPin directed by vanadyl bound methoxide delivered the hydride from re face to give S-configuration alcohol. On the other hand, in mode II the HBPin first interact with V=O followed by re face attack on equatorially coordinated carbonyl to give S-configuration alcohol.
In final part, we further extended the substrate class to α-methyl-β-keto amide. A thorough screening of ten solvents, five additives and nine different catalysts afforded the highly desymmetric α-methyl-β-hydroxy amide in 70% yield with 91% ee and 99:1 dr (syn:anti) in THF: acetone (1:1) mixed solvent at −20 °C using HBPin as reducing agent with 1d catalyst. Subsequently, a more challenging α-phenyl-β-ketoamide enantioselectively reduced to syn selective α-phenyl-β-hydroxy amide in 66% yield with 89% ee. A similar plausible transition state has been proposed as that of beta-keto amide, in which bulky HBPin directed by vanadyl bound methoxide or V=O delivered the hydride from re face of carbonyl to give highly syn selective α-methyl/phenyl-β-hydroxy amides.
1. Cotton, F. A. W., G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry,, 6th ed.; John Wiley & Sons: New York,. 1999.
2. Weeks, M. E., The discovery of the elements. XVII. The halogen family. J. Chem. Educ. 1932, 9, 1915.
3. Helder, R.; Hummelen, J. C.; Laane, R. W. P. M.; Wiering, J. S.; Wynberg, H., Catalytic asymmetric induction in oxidation reactions. The synthesis of optically active epoxides. Tetrahedron Lett. 1976, 17, 1831–1834.
4. Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B., Chiral hydroxamic acids as ligands in the vanadium catalyzed asymmetric epoxidation of allylic alcohols by tert-butyl hydroperoxide. J. Am. Chem. Soc. 1977, 99, 1990–1992.
5. Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H., Chiral Vanadium-Based Catalysts for Asymmetric Epoxidation of Allylic Alcohols. J. Org. Chem. 1999, 64, 338–339.
6. Hoshino, Y.; Yamamoto, H., Novel α-Amino Acid-Based Hydroxamic Acid Ligands for Vanadium-Catalyzed Asymmetric Epoxidation of Allylic Alcohols. J. Am. Chem. Soc. 2000, 122, 10452–10453.
7. Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H., Enantioselective Epoxidation of Allylic Alcohols by a Chiral Complex of Vanadium: An Effective Controller System and a Rational Mechanistic Model. Angew. Chem., Int. Ed. 2005, 44, 4389–4391.
8. Zhang, W.; Yamamoto, H., Vanadium-Catalyzed Asymmetric Epoxidation of Homoallylic Alcohols. J. Am. Chem. Soc. 2007, 129, 286–287.
9. Li, Z.; Zhang, W.; Yamamoto, H., Vanadium-Catalyzed Enantioselective Desymmetrization of meso Secondary Allylic Alcohols and Homoallylic Alcohols. Angew. Chem., Int. Ed. 2008, 47, 7520–7522.
10. Wu, H.-L.; Uang, B.-J., Asymmetric epoxidation of allylic alcohols catalyzed by new chiral vanadium(V) complexes. Tetrahedron: Asymmetry 2002, 13, 2625–2628.
11. Bourhani, Z.; Malkov, A. V., Ligand-accelerated vanadium-catalysed epoxidation in water. Chem. Commun. 2005, 4592–4594.
12. Noji, M.; Kobayashi, T.; Uechi, Y.; Kikuchi, A.; Kondo, H.; Sugiyama, S.; Ishii, K., Asymmetric Epoxidation of Allylic Alcohols Catalyzed by Vanadium–Binaphthylbishydroxamic Acid Complex. J. Org. Chem. 2015, 80, 3203–3210.
13. Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L., Dearomatization of tryptophols via a vanadium-catalyzed asymmetric epoxidation and ring-opening cascade. Chem. Commun. 2014, 50, 1231–1233.
14. Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L., Dearomatization of Indoles via a Phenol-Directed Vanadium- Catalyzed Asymmetric Epoxidation and Ring-Opening Cascade. Adv. Synth. Catal. 2015, 357, 3064–3068.
15. Fernández, I.; Khiar, N., Recent Developments in the Synthesis and Utilization of Chiral Sulfoxides. Chem. Rev. 2003, 103, 3651–3706.
16. Remuzzi, G.; Perico, N.; Benigni, A., New therapeutics that antagonize endothelin: promises and frustrations. Nat. Rev. Drug Discovery 2002, 1, 986–1001.
17. Curci, R.; Di Furia, F.; Testi, R.; Modena, G., Metal catalysis in oxidation by peroxides. Vanadium catalysed oxidation of organosulphur compounds by t-butyl hydroperoxide. J. Chem. Soc., Perkin Trans. 2 1974, 752–757.
18. Kiyohiko, N.; Masaaki, K.; Junnosuke, F., Asymmetric Oxidation of Sulfides to Sulfoxides by Organic Hydroperoxides with Optically Active Schiff Base-Oxovanadium(IV) Catalysts. Chem. Lett. 1986, 15, 1483–1486.
19. Bolm, C.; Bienewald, F., Asymmetric Sulfide Oxidation with Vanadium Catalysts and H2O2. Angew. Chem., Int. Ed. 1996, 34, 2640–2642.
20. Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H., Efficient Asymmetric Oxidation of Sulfides and Kinetic Resolution of Sulfoxides Catalyzed by a Vanadium−Salan System. J. Org. Chem. 2004, 69, 8500–8503.
21. Drago, C.; Caggiano, L.; Jackson, R. F. W., Vanadium-Catalyzed Sulfur Oxidation/Kinetic Resolution in the Synthesis of Enantiomerically Pure Alkyl Aryl Sulfoxides. Angew. Chem., Int. Ed. 2005, 44, 7221–7223.
22. Liu, H.; Wang, M.; Wang, Y.; Wang, Y.; Sun, H.; Sun, L., Asymmetric oxidation of sulfides with hydrogen peroxide catalyzed by a vanadium complex of a new chiral NOO-ligand. Catal. Commun. 2009, 11, 294–297.
23. Zeng, Q.; Gao, Y.; Dong, J.; Weng, W.; Zhao, Y., Vanadium-catalyzed enantioselective oxidation of allyl sulfides. Tetrahedron: Asymmetry 2011, 22, 717–721.
24. Zeng, Q.; Weng, W.; Xue, X., Sulfide oxidation catalyzed vanadyl complexes of N-salicylidene α-amino acids at low catalyst loading. Inorg. Chim. Acta 2012, 388, 11–15.
25. Chuo, T. H.; Boobalan, R.; Chen , C., Camphor-Based Schiff Base Of 3-Endo-Aminoborneol (SBAB): Novel Ligand for Vanadium-Catalyzed Asymmetric Sulfoxidation and Subsequent Kinetic Resolution. ChemistrySelect 2016, 1, 2174–2180.
26. Ben Zid, T.; Fadhli, M.; Khedher, I.; Fraile, J. M., New bis(oxazoline)–vanadyl complexes, supported by electrostatic interaction in Laponite clay, as heterogeneous catalysts for asymmetric oxidation of methyl phenyl sulfide. Microporous Mesoporous Mater. 2017, 239, 167–172.
27. Radosevich, A.; Musich, C.; Toste, F., Vanadium-Catalyzed Asymmetric Oxidation of α-Hydroxy Esters Using Molecular Oxygen as Stoichiometric Oxidant. J. Am. Chem. Soc. 2005, 127, 1090–1.
28. Shiels, R. A.; Venkatasubbaiah, K.; Jones, C. W., Polymer and Silica Supported Tridentate Schiff Base Vanadium Catalysts for the Asymmetric Oxidation of Ethyl Mandelate – Activity, Stability and Recyclability. Adv. Synth. Catal. 2008, 350, 2823–2834.
29. Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T., Chiral N-salicylidene vanadyl carboxylate-catalyzed enantioselective aerobic oxidation of α-hydroxy esters and amides. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3522–3527.
30. Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T., Highly Enantioselective Aerobic Oxidation of α-Hydroxyphosphonates Catalyzed by Chiral Vanadyl(V) Methoxides Bearing N-Salicylidene-α-aminocarboxylates. J. Am. Chem. Soc. 2006, 128, 6308–6309.
31. Chen, C. T.; Kao, J. Q.; Salunke, S. B.; Lin, Y. H., Enantioselective aerobic oxidation of α-hydroxy-ketones catalyzed by oxidovanadium(V) methoxides bearing chiral, N-salicylidene-tert-butylglycinates. Org. Lett. 2011, 13, 26–9.
32. Salunke, S. B.; Babu, N. S.; Chen, C.-T., Asymmetric Aerobic Oxidation of α-Hydroxy Acid Derivatives Catalyzed by Reusable, Polystyrene-Supported Chiral N-Salicylidene Oxidovanadium tert-Leucinates. Adv. Synth. Catal. 2011, 353, 1234–1240.
33. Hwang, D.-R.; Chen, C.-P.; Uang, B.-J., Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO(acac)2. Chem. Commun. 1999, 1207–1208.
34. Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T., Catalytic Asymmetric Coupling of 2-Naphthols by Chiral Tridentate Oxovanadium(IV) Complexes. Org. Lett. 2001, 3, 869–872.
35. Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J., Chiral oxovanadium complex catalyzed enantioselective oxidative coupling of 2-naphthols. Chem. Commun. 2001, 980–981.
36. Barhate, N. B.; Chen, C.-T., Catalytic Asymmetric Oxidative Couplings of 2-Naphthols by Tridentate N-Ketopinidene-Based Vanadyl Dicarboxylates. Org. Lett. 2002, 4, 2529–2532.
37. Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y., The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Chem. Commun. 2002, 914–915.
38. Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z., Highly Enantioselective Oxidative Couplings of 2-Naphthols Catalyzed by Chiral Bimetallic Oxovanadium Complexes with Either Oxygen or Air as Oxidant. J. Am. Chem. Soc. 2007, 129, 13927–13938.
39. Takizawa, S.; Katayama, T.; Sasai, H., Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chem. Commun. 2008, 4113–4122.
40. Takizawa, S.; Kodera, J.; Yoshida, Y.; Sako, M.; Breukers, S.; Enders, D.; Sasai, H., Enantioselective oxidative-coupling of polycyclic phenols. Tetrahedron 2014, 70, 1786–1793.
41. (a) Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H., Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron: Asymmetry 2015, 26, 613–616; (b) Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.; Takizawa, S.; Sasai, H., Efficient Enantioselective Synthesis of Oxahelicenes Using Redox/Acid Cooperative Catalysts. J. Am. Chem. Soc. 2016, 138, 11481–11484.
42. (a) Narute, S.; Parnes, R.; Toste, F. D.; Pappo, D., Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. J. Am. Chem. Soc. 2016, 138, 16553–16560; (b) Narute, S.; Pappo, D., Iron Phosphate Catalyzed Asymmetric Cross-Dehydrogenative Coupling of 2-Naphthols with β-Ketoesters. Org. Lett. 2017, 19, 2917–2920.
43. Shende, V. S.; Singh, P.; Bhanage, B. M., Recent trends in organocatalyzed asymmetric reduction of prochiral ketones. Catal. Sci. Technol. 2018, 8, 955–969.
44. Borch, R. F.; Levitan, S. R., Asymmetric synthesis of alcohols, amines, and amino acids. J. Org. Chem. 1972, 37, 2347–2349.
45. Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N., Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes. J. Chem. Soc. Chem. Commun. 1981, 315–317.
46. Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S., Asymmetric reduction of aromatic ketones with the reagent prepared from (S)-(–)-2-amino-3-methyl-1,1-diphenylbutan-1-ol and borane. J. Chem. Soc. Chem. Commun. 1983, 469–470.
47. Corey, E. J.; Bakshi, R. K.; Shibata, S., Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc. 1987, 109, 5551–5553.
48. Kaldun, J.; Krimalowski, A.; Breuning, M., Enantioselective borane reduction of ketones catalyzed by tricyclic 1,3,2-oxazaborolidines. Tetrahedron Lett. 2016, 57, 2492–2495.
49. Azizoglu, M.; Erdogan, A.; Arslan, N.; Turgut, Y.; Hosgoren, H.; Pirinccioglu, N., A series of novel β-hydroxyamide based catalysts for borane-mediated enantioselective reductions of prochiral ketones. Tetrahedron: Asymmetry 2016, 27, 614–622.
50. Nagata, T.; Yorozu, K.; Yamada, T.; Mukaiyama, T., Enantioselective Reduction of Ketones with Sodium Borohydride, Catalyzed by Optically Active (β-Oxoaldiminato)cobalt(II) Complexes. Angew. Chem., Int. Ed. 1995, 34, 2145–2147.
51. D., S. K.; Takushi, N.; Tohru, Y.; Teruaki, M., Enantioselective Borohydride Reduction of Ketones Catalyzed by Optically Active Cobalt(II) Complexes: Achievement of High Enantioselection by Modified Borohydrides with Furfuryl Alcohol Derivatives. Chem. Lett. 1996, 25, 737–738.
52. Ohtsuka, Y.; Koyasu, K.; Ikeno, T.; Yamada, T., Reductive desymmetrization of 2-alkyl-1,3-diketones catalyzed by optically active beta-ketoiminato cobalt complexes. Org. Lett. 2001, 3, 2543–6.
53. Tsubo, T.; Chen, H.-H.; Yokomori, M.; Fukui, K.; Kikuchi, S.; Yamada, T., Enantioselective Borohydride Reduction of Aliphatic Ketones Catalyzed by Ketoiminatocobalt(III) Complex with 1-Chlorovinyl Axial Ligand. Chem. Lett. 2012, 41, 780–782.
54. Tsubo, T.; Chen, H.-H.; Yokomori, M.; Kikuchi, S.; Yamada, T., Reusable Cobalt(III) Complex Catalysts for Enantioselective Borohydride Reduction of Ketones. Bull. Chem. Soc. Jpn. 2013, 86, 983–986.
55. Giffels, G.; Dreisbach, C.; Kragl, U.; Weigerding, M.; Waldmann, H.; Wandrey, C., Chiral Titanium Alkoxides as Catalysts for the Enantioselective Reduction of Ketones with Boranes. Angew. Chem., Int. Ed. 1995, 34, 2005–2006.
56. Almqvist, F.; Torstensson, L.; Gudmundsson, A.; Frejd, T., New Ligands for the Titanium (IV)-Induced Asymmetric Reduction of Ketones with Catecholborane. Angew. Chem., Int. Ed. 1997, 36, 376–377.
57. (a) Vogels, C. M.; O'Connor, P. E.; Phillips, T. E.; Watson, K. J.; Shaver, M. P.; Hayes, P. G.; Westcott, S. A., Rhodium-catalyzed hydroborations of allylamine and allylimines1. Can. J. Chem. 2001, 79, 1898–1905; (b) Friberg, A.; Sarvary, I.; Wendt, O. F.; Frejd, T., Bicyclo[2.2.2]octane-derived chiral ligands—synthesis and application of BODOLs in the asymmetric reduction of acetophenone with catecholborane. Tetrahedron: Asymmetry 2008, 19, 1765–1777.
58. Phothongkam, S.; Uang, B.-J., Enantioselective Reduction of Ketones Induced by a C2-Symmetrical Chiral Hydroxyamide/Titanium(IV) complex. Asian J. Chem. 2015, 4, 794–799.
59. Fu-Yao, Z.; Chiu-Wing, Y.; Chan, A. S. C., Enantioselective borane reduction of ketones catalyzed by chiral lanthanum alkoxides. Tetrahedron: Asymmetry 1996, 7, 2463–2466.
60. Lin, Y.-M.; Fu, I. P.; Uang, B.-J., Enantioselective borane reduction of aromatic ketones using chiral BINOL derivatives as ligands in an aluminum catalyst. Tetrahedron: Asymmetry 2001, 12, 3217–3221.
61. Vasilenko, V.; Blasius, C. K.; Wadepohl, H.; Gade, L. H., Mechanism-Based Enantiodivergence in Manganese Reduction Catalysis: A Chiral Pincer Complex for the Highly Enantioselective Hydroboration of Ketones. Angew. Chem., Int. Ed. 2017, 56, 8393–8397.
62. Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K., Highly enantioselective hydrosilylation of ketones with chiral and C2-symmetrical bis(oxazolinyl)pyridine-rhodium catalysts. Organometallics 1991, 10, 500–508.
63. Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M., Iron-Catalyzed Enantioselective Hydrosilylation of Ketones. Angew. Chem., Int. Ed. 2008, 47, 2497–2501.
64. Nolin, K. A.; Ahn, R. W.; Toste, F. D., Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. J. Am. Chem. Soc. 2005, 127, 12462–12463.
65. Nolin, K. A.; Ahn, R. W.; Kobayashi, Y.; Kennedy-Smith, J. J.; Toste, F. D., Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)ReV–Oxo Complexes. Chem.Eur. J. 2010, 16, 9555–9562.
66. Das, B. G.; Nallagonda, R.; Dey, D.; Ghorai, P., Synthesis of Air- and Moisture-Stable, Storable Chiral Oxorhenium Complexes and Their Application as Catalysts for the Enantioselective Imine Reduction. Chem.Eur. J. 2015, 21, 12601–12605.
67. (a) Schiwek, C. H.; Vasilenko, V.; Wadepohl, H.; Gade, L. H., The open d-shell enforces the active space in 3d metal catalysis: highly enantioselective chromium(II) pincer catalysed hydrosilylation of ketones. Chem. Commun. 2018, 54, 9139–9142; (b) Titze, M.; Heitkämper, J.; Junge, T.; Kästner, J.; Peters, R., Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew. Chem., Int. Ed. 2021, 60, 5544–5553.
68. (a) Asao, N.; Asano, T.; Yamamoto, Y., Do More Electrophilic Aldehydes/Ketones Exhibit Higher Reactivity toward Nucleophiles in the Presence of Lewis Acids? Angew. Chem., Int. Ed. 2001, 40, 3206–3208; (b) Verkade, J. M. M.; Quaedflieg, P. J. L. M.; Verzijl, G. K. M.; Lefort, L.; van Delft, F. L.; de Vries, J. G.; Rutjes, F. P. J. T., Enantio- and diastereoselective synthesis of γ-amino alcohols. Chem. Commun. 2015, 51, 14462–14464; (c) Zuo, W.; Morris, R. H., Synthesis and use of an asymmetric transfer hydrogenation catalyst based on Iron(II) for the synthesis of enantioenriched alcohols and amines. Nat. Protoc. 2015, 10, 241–257; (d) Kong, D.; Li, M.; Wang, R.; Zi, G.; Hou, G., Asymmetric Hydrogenation of β-Aryloxy/Alkoxy Cinnamic Nitriles and Esters. Org. Lett. 2016, 18, 4916–4919; (e) Štefane, B.; Požgan, F., Metal-Catalysed Transfer Hydrogenation of Ketones. Top. Curr. Chem. 2016, 374, 18; (f) Chen, J.; Zhang, T.; Liu, X.; Shen, L., Enantioselective Synthesis of (S)-γ-Amino Alcohols by Ru/Rh/Ir Catalyzed Asymmetric Transfer Hydrogenation (ATH) with Tunable Chiral Tetraaza Ligands in Water. Catal. Lett. 2019, 149, 601–609; (g) Gao, T.-T.; Zhang, W.-W.; Sun, X.; Lu, H.-X.; Li, B.-J., Stereodivergent Synthesis through Catalytic Asymmetric Reversed Hydroboration. J. Am. Chem. Soc. 2019, 141, 4670–4677.
69. (a) Enders, D.; Stöckel, B. A.; Rembiak, A., Enantio- and chemoselective Brønsted-acid/Mg(nBu)2 catalysed reduction of α-keto esters with catecholborane. Chem. Commun. 2014, 50, 4489–4491; (b) Mamillapalli, N. C.; Sekar, G., Enantioselective Synthesis of α-Hydroxy Amides and β-Amino Alcohols from α-Keto Amides. Chem.Eur. J. 2015, 21, 18584–18588.
70. Gu, G.; Yang, T.; Yu, O.; Qian, H.; Wang, J.; Wen, J.; Dang, L.; Zhang, X., Enantioselective Iridium-Catalyzed Hydrogenation of α-Keto Amides to α-Hydroxy Amides. Org. Lett. 2017, 19, 5920–5923.
71. Zhang, L.; Wang, Z.; Han, Z.; Ding, K., Manganese-Catalyzed anti-Selective Asymmetric Hydrogenation of α-Substituted β-Ketoamides. Angew. Chem., Int. Ed. 2020, 59, 15565–15569.
72. (a) Kühn, F. E.; Santos, A. M.; Abrantes, M., Mononuclear Organomolybdenum(VI) Dioxo Complexes: Synthesis, Reactivity, and Catalytic Applications. Chem. Rev. 2006, 106, 2455–2475; (b) Chakravarthy, R. D.; Chand, D. K., Synthesis, structure and applications of [cis-dioxomolybdenum(VI)-(ONO)] type complexes. J. Chem. Sci. 2011, 123, 187–199; (c) Zwettler, N.; Schachner, J. A.; Belaj, F.; Mösch-Zanetti, N. C., Oxorhenium(V) Complexes with Phenolate–Pyrazole Ligands for Olefin Epoxidation Using Hydrogen Peroxide. Inorg. Chem. 2014, 53, 12832–12840; (d) Liu, Y.; Lau, T.-C., Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J. Am. Chem. Soc. 2019, 141, 3755–3766.
73. Fernandes, A. C.; Fernandes, R.; Romão, C. C.; Royo, B., [MoO2Cl2] as catalyst for hydrosilylation of aldehydes and ketones. Chem. Commun. 2005, 213–214.
74. (a) Chen, C.-T.; Lin, J.-S.; Kuo, J.-H.; Weng, S.-S.; Cuo, T.-S.; Lin, Y.-W.; Cheng, C.-C.; Huang, Y.-C.; Yu, J.-K.; Chou, P.-T., Site-Selective DNA Photocleavage Involving Unusual Photoinitiated Tautomerization of Chiral Tridentate Vanadyl(V) Complexes Derived from N-Salicylidene α-Amino Acids. Org. Lett. 2004, 6, 4471–4474; (b) Chen, C.-T.; Lin, Y.-H.; Kuo, T.-S., Directed Assembly of Chiral Oxidovanadium(V) Methoxides into C4-Symmetric Metal(I) Vanadate-Centered Quadruplexes: Synergistic K+- and Ag+-specific Transport. J. Am. Chem. Soc. 2008, 130, 12842–12843.
75. (a) Pujol, A.; Calow, A. D. J.; Batsanov, A. S.; Whiting, A., One-pot catalytic asymmetric borylation of unsaturated aldehyde-derived imines; functionalisation to homoallylic boronate carboxylate ester derivatives. Org. Biomol. Chem. 2015, 13, 5122–5130; (b) Hendi, S. B.; Hendi, M. S.; Wolfe, J. F., A New Synthesis of β-Keto Amides via Reaction of Ketone Lithium Enolates with Isocyanates. Synth. Commun. 1987, 17, 13–18; (c) Tang, C. G.; Lin, H.; Zhang, C.; Liu, Z. Q.; Yang, T.; Wu, Z. L., Highly enantioselective bioreduction of N-methyl-3-oxo-3-(thiophen-2-yl) propanamide for the production of (S)-duloxetine. Biotechnol. Lett. 2011, 33, 1435–1440; (d) Ren, Z.-Q.; Liu, Y.; Pei, X.-Q.; Wang, H.-B.; Wu, Z.-L., Bioreductive production of enantiopure (S)-duloxetine intermediates catalyzed with ketoreductase ChKRED15. J. Mol. Catal. B: Enzym. 2015, 113, 76–81.
76. (a) Wynberg, H.; Feringa, B., Enantiomeric recognition and interactions. Tetrahedron 1976, 32, 2831–2834; (b) Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B., Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions. J. Am. Chem. Soc. 1986, 108, 2353–2357; (c) Girard, C.; Kagan, H. B., Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angew. Chem., Int. Ed. 1998, 37, 2922–2959; (d) Finn, M. G.; Sharpless, K. B., Mechanism of asymmetric epoxidation. 2. Catalyst structure. J. Am. Chem. Soc. 1991, 113, 113–126; (e) Satyanarayana, T.; Abraham, S.; Kagan, H. B., Nonlinear Effects in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2009, 48, 456–494.
77. (a) Shi, S.; Nolan, S. P.; Szostak, M., Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Acc. Chem. Res. 2018, 51, 2589–2599; (b) Tan, Q. W.; Chovatia, P.; Willis, M. C., Copper-catalysed synthesis of alkylidene 2-pyrrolinone derivatives from the combination of α-keto amides and alkynes. Org. Biomol. Chem. 2018, 16, 7797–7800.
78. Shin, I.; Lee, M.-R.; Lee, J.; Jung, M.; Lee, W.; Yoon, J., Synthesis of Optically Active Phthaloyl D-Aminooxy Acids from L-Amino Acids or L-Hydroxy Acids as Building Blocks for the Preparation of Aminooxy Peptides. J. Org. Chem. 2000, 65, 7667–7675.
79. Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X., Highly Diastereoselective and Enantioselective Synthesis of α-Hydroxy β-Amino Acid Derivatives: Lewis Base Catalyzed Hydrosilylation of α-Acetoxy β-Enamino Esters. Angew. Chem., Int. Ed. 2011, 50, 7304–7307.
80. Russo, A.; Galdi, G.; Croce, G.; Lattanzi, A., Highly Enantioselective Epoxidation Catalyzed by Cinchona Thioureas: Synthesis of Functionalized Terminal Epoxides Bearing a Quaternary Stereogenic Center. Chem.Eur. J. 2012, 18, 6152–6157.
81. Rostovskii, N. V.; Novikov, M. S.; Khlebnikov, A. F.; Khlebnikov, V. A.; Korneev, S. M., Rh(II)-carbenoid mediated 2H-azirine ring-expansion as a convenient route to non-fused photo- and thermochromic 2H-1,4-oxazines. Tetrahedron 2013, 69, 4292–4301.
82. Kern, N.; Hoffmann, M.; Blanc, A.; Weibel, J.-M.; Pale, P., Gold(I)-Catalyzed Rearrangement of N-Aryl 2-Alkynylazetidines to Pyrrolo[1,2-a]indoles. Org. Lett. 2013, 15, 836–839.
83. Di Grandi, M. J.; Bennett, C.; Cagino, K.; Muccini, A.; Suraci, C.; Saba, S., Direct Preparation of Amides from Amine Hydrochloride Salts and Orthoesters: A Synthetic and Mechanistic Perspective. Synth. Commun. 2015, 45, 2601–2607.
84. Lin, Z.; Li, J.; Huang, Q.; Huang, Q.; Wang, Q.; Tang, L.; Gong, D.; Yang, J.; Zhu, J.; Deng, J., Chiral Surfactant-Type Catalyst: Enantioselective Reduction of Long-Chain Aliphatic Ketoesters in Water. J. Org. Chem. 2015, 80, 4419–4429.
85. Catalytic amidation reaction of ester and amine using alkoxide catalyst. J.P. patent 2013163657 2013.
86. Neo, A. G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C. F., A new synthesis of β-keto amides by reduction of Passerini adducts. Tetrahedron Lett. 2005, 46, 23–26.
87. Shimada, N.; Hirata, M.; Koshizuka, M.; Ohse, N.; Kaito, R.; Makino, K., Diboronic Acid Anhydrides as Effective Catalysts for the Hydroxy-Directed Dehydrative Amidation of Carboxylic Acids. Org. Lett. 2019, 21, 4303–4308.
88. Wang, Y.-C.; Yan, T.-H., Al–Hg promoted chemoselective dehalogenation of halohydrin aldol adducts. Chem. Commun. 2000, 545–546.
89. Méndez-Sánchez, D.; Mourelle-Insua, Á.; Gotor-Fernández, V.; Lavandera, I., Synthesis of α-Alkyl-β-Hydroxy Amides through Biocatalytic Dynamic Kinetic Resolution Employing Alcohol Dehydrogenases. Adv. Synth. Catal. 2019, 361, 2706–2712.
90. Kakei, H.; Nemoto, T.; Ohshima, T.; Shibasaki, M., Efficient Synthesis of Chiral α- and β-Hydroxy Amides: Application to the Synthesis of (R)-Fluoxetine. Angew. Chem., Int. Ed. 2004, 43, 317–320.
91. Tsuji, H.; Yamamoto, H., Hydroxy-Directed Amidation of Carboxylic Acid Esters Using a Tantalum Alkoxide Catalyst. J. Am. Chem. Soc. 2016, 138, 14218–14221.
92. Tang, C.-G.; Lin, H.; Zhang, C.; Liu, Z.-Q.; Yang, T.; Wu, Z.-L., Highly enantioselective bioreduction of N-methyl-3-oxo-3-(thiophen-2-yl) propanamide for the production of (S)-duloxetine. Biotechnol. Lett. 2011, 33, 1435–1440.
93. Goldys, A. M.; Núñez, M. G.; Dixon, D. J., Creation through Immobilization: A New Family of High Performance Heterogeneous Bifunctional Iminophosphorane (BIMP) Superbase Organocatalysts. Org. Lett. 2014, 16, 6294–6297.
94. Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T., Chiral Copper(II)-Catalyzed Enantioselective Boron Conjugate Additions to α,β-Unsaturated Carbonyl Compounds in Water. Angew. Chem., Int. Ed. 2012, 51, 12763–12766.