研究生: |
張俊羿 Chang, Chun-I |
---|---|
論文名稱: |
CMOS-MEMS製程於運動感測器之開發與整合 Design, Implementation and Integration of CMOS-MEMS Motion Sensors |
指導教授: |
方維倫
Weileun Fang |
口試委員: |
李昇憲
Li, Sheng-Shian 莊英宗 Juang, Ying-Zong 鄭裕庭 Cheng, Yu-Ting 楊燿州 Yang, Yao-Joe Joseph 吳名清 Wu, Ming-Ching 羅炯成 Lo, Chiung-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 229 |
中文關鍵詞: | 金氧半導體微機電 、加速度計 、共振式磁力計 、感測器整合 、抓取與放置 、體積塊 、陽極氧化鋁 、同平面線圈 、壓力計 、溼度感測器 、溫度感測器 |
外文關鍵詞: | CMOS-MEMS, Accelerometer, Resonant magnetic sensor, Sensors integration, Pick-and-place, Bulk block, Anodic aluminum oxide, In-plane magnetic coil, Pressure sensor, Humidity sensor, Temperature sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用標準CMOS製程搭配各種後製程來設計製造感測器整合晶片,以加速度計與共振式磁力計作為研究主軸,最後透過CMOS製程來實現與整合六軸運動感測器於單一晶片上。由於元件的設計受限於CMOS-MEMS製程,例如在厚度上之限制,殘餘應力所導致面積尺寸受限等等之限制,因此本研究提出三種提升靈敏度的方法來克服製程限制。在加速度計部分,利用CMOS的鋁膜層成長陽極氧化鋁於感測電極上提升加速度計之靈敏度。以及利用CMOS標準製程中二氧化矽材料作為加速度計質量塊主要結構,將複合膜層堆疊所構成的設計改為僅由單一材料,來降低因熱膨脹係數不同之複合膜層所產生的形變量。本文也提出結合抓取與放置技術放置體積塊增加質量於傾斜計應用。在磁力計部分,利用CMOS多層金屬走線之優勢,設計兩組正交擺放同平面線圈整合於單一感測單元上構成三軸磁力計。本文最後也透過三個應用樞紐整合來展示CMOS-MEMS感測器之開發與整合於單一晶片上。本研究所提出之慣性感測樞紐部份則包括加速度計與磁力計,將MEMS慣性感測器相結合,可以提供更好的精度和分辨率,並且可以有更多應用。環境感測樞紐則包含溼度感測器、溫度感測器。聲學感測樞紐包括了麥克風、麥克風陣列。未來可針對不同應用的需求製作出各種不同的感測器樞紐於CMOS-MEMS製程上實現。
In this study, a sensor integration chip is designed and implemented based on the standard TSMC 0.35 μm 2-polysilicon 4-Metal (2P4M) process. This study implements and further monolithic integrates the tri-axis accelerometer, tri-axis magnetic sensor, pressure sensor, humidity sensor, and temperature sensor on a single chip. Moreover, various designs and post-CMOS process technologies have been developed to enhance the performances of the sensors. First, the growing of nanoporous anodic aluminum oxide (np-AAO) thin layer on sensing electrodes has been demonstrated. Second, the stacking of pure oxide layers as the mechanical structures has been realized. The initial and thermal deformations of suspended MEMS structure respectively due to the thin film residual stresses and thermal expansion coefficient (CTE) mismatch are reduced. Third, the low temperature pick-place and UV-curing process has been developed to integrate a bulk block on a suspended CMOS MEMS structure. Fourth, the CMOS-MEMS structure with the embedded in-plane magnetic coils is designed implemented using the metal layers and tungsten vias. The coils act as a solenoid to generate in-plane magnetic field. Finally, the concepts to exploit these available CMOS MEMS sensors to establish the motion hub and environment hub have also been demonstrated.
[1] Texas Instruments, http://www.ti.com
[2] HP Company, http://www.hp.com
[3] Bosch Inc., http://www.bosch.com
[4] STMicroelectronics, http://www.st.com/
[5] InvenSense Inc., http://www.invensense.com
[6] Analog Devices, Inc., http://www.analog.com
[7] Freescale Semiconductor, Inc., http://www.freescale.com
[8] Kionix Inc., http://www.kionix.com/
[9] MEMSIC Inc., http://www.memsic.com
[10] Apple Inc., http://www.apple.com/ipodtouch/
[11] Yole Développement, http://www.yole.fr/
[12] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, 21-23, pp 297-302, 1990.
[13] M. Parameswaran, R. Chung, M. Gaitan, R. B. Johnson, and M. Syrzycki, "Commercial CMOS Fabricated Integrated. Dynamic Thermal Scene Simulator," IEDM’91, Washington, DC, Dec. 8-11, pp.754-756, 1991.
[14] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree of freedom response,” Transducers’91, San Francisco, CA, June.24-28, pp. 97-100, 1991.
[15] VTI Technologies, http://www.vti.fi/en
[16] Hitachi Metals America, Ltd., http://www.hitachimetals.com
[17] SiTime Corporation, http://www.sitime.com/
[18] Infineon Technologies AG, http://www.infineon.com/
[19] H. Lakdawala and G. Fedder, “CMOS Micromachined Infrared Imager Pixel,” Transducers'01, Munich, Germany, June.10-14, pp. 1548-155, 2001.
[20] O. Brand, “Microsensor integration into system-on-chip,” Proc. IEEE, vol. 94, pp. 1160-1176, 2006.
[21] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE, vol. 86, pp. 1640-1659, 1998.
[22] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, “Embedded micromechianical devices for the monolithic integration of MEMS with CMOS,” IEEE Electron Device Meeting, San Francisco, CA, 1995, pp. 609-612.
[23] G. K. Fedder, “CMOS-Based Sensors,” in Proc. IEEE Sensors 2005, Irvine, CA, Oct., 2005, pp. 125-128.
[24] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully Monolithic CMOS Nickel Micromechanical Resonator Oscillator,” IEEE MEMS’08, Tucson, AZ, Jan., 2008, pp. 10-13.
[25] H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L Wang, and H.-Y. Lin, “Multiple Type Biosensors Fabricated Using the CMOS BioMEMS Platform,” Sens. Actuators B, vol. 144, pp. 407-412, 2010.
[26] C.-M Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” J. Micromech. Microeng., vol. 19, 015023, 2009.
[27] H. Lakdawala, and G. K. Fedder, “Analysis of Temperature-Dependent Residual Stress Gradients in CMOS Micromachined Structure,” Transducers’99, Sendai, Japan, June, 1999.
[28] M.Hill, C. O’ Mahony, R. Duane, and A. Mathewson, “Performance and Reliability of Post-CMOS Metal/Oxide MEMS for RF Application,” J. Micromech. Microeng., vol. 13, pp. S131-S138, 2003.
[29] M. Dardalhone, V. Beroulle, L. Latorre, P. Nouet, G. Perez, J.M. Nicot, and C. Oudea, “Reliability Analysis of CMOS MEMS Structures Obtained by Front Side Bulk Micromachining,” Microelectronics Reliability, vol. 42, pp. 1777-1782, 2002.
[30] H. Baltes, “Future of IC microtransducers,” Sens. Actuators A, vol. 56, pp. 179-92, 1996.
[31] F. Mayer, G. Salis, J. Funk, O. Paul, and H. Baltes, “Scaling of thermal CMOS gas flow microsensors: experiment and simulation”, IEEE MEMS’96, San Diego, CA, Feb., 1996, pp. 116-121.
[32] H. Baltes, O. Paul, and O. Brand, “Micromachined thermally based CMOS microsensors,” Proc. IEEE, vol. 86, pp. 1660-1678, 1998.
[33] O. Paul, and H. Baltes, “Novel fully CMOS-compatible vacuum sensor,” Sens. Actuators A, vol. 46-47, pp. 143-146, 1995.
[34] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” J. Microelectromech. Syst., vol. 11, pp. 188-195, 2002.
[35] H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators A, vol. 103, pp. 237-241, 2003.
[36] Michael S.-C. Lu, and G. K. Fedder, “Position control of parallel-plate microactuators for probe-based data storage,” J. Microelectromech. Syst., vol. 13, pp. 759-769, 2004.
[37] N. Lazarus, S. S. Bedair, C.-C. Lo, and G. K. Fedder, “CMOS-MEMS capacitive humidity sensor,” J. Microelectromech. Syst., vol. 19, pp. 183-191, 2010.
[38] J. Reinke, G. K. Fedder, and T. Mukherjee, “CMOS-MEMS variable capacitors using electrothermal actuation,” J. Microelectromech. Syst., vol. 19, pp. 1105-1115, 2010.
[39] M. Doelle, J. Held, P. Ruther, and O. Paul, “Simultaneous and independent measurement of stress and temperature using a single filed-effect transistor strcture,” I J. Microelectromech. Syst., vol. 16, pp. 1232-1242, 2007.
[40] K. Seidl, S. Herwil, T. Torfs, H. P. Neves, O. Paul, and P. Ruther, “CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording,” J. Microelectromech. Syst., vol. 20, pp. 1439-1448, 2011.
[41] J. Handwerker, P. Gieschke, M. Baumann, and O. Paul, “CMOS integrated silicon/glass-bonded 3D force/torque sensor,” IEEE MEMS’12, Paris, France, Jan., 2012, pp. 136-139.
[42] H. Takao, Y. Matsumoto and M. Ishida, “A Monolithically Integrated Three Axial Accelerometer Using Stress Sensitive CMOS Differential Amplifiers,” Transducers’97, Chicago, USA, June 16-19, pp.1173-1176.
[43] H. Takao, H. Fukumoto, and M. Ishida, “A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining,” J. Microelectromech. Syst., vol. 48, pp. 1961-1968, 2001.
[44] A. Goryu, A. Ikedo, M. Ishida and T. Kawano, “Electrical catching and transfer of nanoparticles via nanotip silicon probe arrays,” Transducers’11, Beijing, China, June 5-9, 2011, pp. 1741-1744.
[45] Akustica, “AKU 230 digital CMOS MEMS microphone,” Feb., 2012, Rev.2.
[46] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application,” Sens. Actuators A, vol. 54, pp 472-476, 1996.
[47] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” J. Micromech. Microeng., vol. 6, pp 431-435, 1996.
[48] L. C. Spangler, and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer,” Sens. Actuators A, vol. 54, pp 523-529, 1996.
[49] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, N0. 1, pp 18-25, 2001.
[50] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of glass inertial sensors,” J. Microelectromech. Syst., vol. 11, No.1, pp 85-90, 2002.
[51] W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of submicrometer, single crystal Si accelerometer,” J. Microelectromech. Syst., vol. 10, No. 4, pp 518-614, 2001.
[52] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
[53] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electronic Devices, vol. 26, pp.1911-1917, 1979.
[54] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A high-performance planar piezoresistive accelerometer,” J. Microelectromech. Syst., vol. 9, pp 58-66, 2000.
[55] D. L. DeVoe, and A. P. Pisano, ”A fully surface-micromachined piezoelectric accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
[56] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect,” IEEE Transactions on Electronic Devices, vol. 35, pp.764-770, 1988.
[57] P. Scheeper, J. O. Gullov, and M. Kofoed, “A piezoelectric triaxial accelerometer,” J. Micromech. Microeng., vol. 6, pp 131-133, 1996.
[58] U. A Dauderstadt, P. M. Sarro, and S. Middelhoek, “Temperature dependence and drift of a thermal accelerometer,” Transducers '97, Chicago, Illinois, June. 16-19, 1997, pp. 1209-1212.
[59] C. H. Liu, and T. W. Kenny, ”A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425-433, 2001.
[60] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst., vol. 7, pp 235-244, 1998.
[61] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, “Resonant accelerometer with self-test,” Sens. Actuators A, vol. 92, pp. 161-167, 2001.
[62] H. Luo, G. K. Fedder, and L. R. Carley, “A 1 mG lateral CMOS-MEMS accelerometer,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 502-507.
[63] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 496-501.
[64] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” IEEE MEMS’99, Orlando, FL, Jan. 17-21, 1999, pp. 606-611.
[65] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset chopper stabilized capacitive readout amplifier for CMOS MEMS accelerometers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, 2002, pp. 428–429.
[66] J. M. Tsai, and G.K. Fedder, “Mechanical Noise-Limited CMOS-MEMS Accelerometers,” IEEE MEMS’05, Miami Beach, FL, Jan. 30- Feb. 3, 2005, pp. 630-633.
[67] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” J. Microelectromech. Syst., vol. 11, pp. 93-101, 2002.
[68] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” J. Micromech. Microeng., vol. 14, pp. 559-566, 2004.
[69] C.-M. Sun, C. Wang, and W. Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sens. Actuators A, vol. 141, pp. 347-352, 2008.
[70] T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.-C. Chiou, and W. Fang, “Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design,” in Proc. IEEE Sensors Conf., Limerick, Ireland, Oct., 2011, pp. 93-96.
[71] Y.-C. Liu, M.-H. Tsai, T.-L. Tang, and W. Fang, “Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers,” J. Micromech. Microeng., vol. 21, 105005, 2011.
[72] H. Qu, D. Fang, and H. Xie, “A single-crystal silicon 3-axis CMOS-MEMS accelerometer,” in Proc. IEEE Sensors 2004, Vienna, Austria, Oct., 2004, pp. 661-664.
[73] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique,” IEEE Trans. Electron Devices, vol. 57, pp. 1670-1679, 2010.
[74] M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C. Wang, and W. Fang, “A CMOS-MEMS accelerometer with tri-axis sensing electrodes arrays,” EUROSENSORS XXIV, Linz, Austria, Sep., 2010, pp. 1083-1086.
[75] M.-H. Tsai, Y.-C. Liu, and W. Fang, “A three-Axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes,” J. Microelectromech. Syst., vol. 21, pp. 1329-1337, 2012.
[76] C. Song and M. Shinn, “Commercial vision of silicon-based inertial sensors,” Sens. Actuators A, vol. 66, pp. 231-236, 1998.
[77] H. Jung, C. J. Kim, and S. H. Kong, “An optimized MEMS-based electrolytic tilt sensor,” Sens. Actuators A, vol. 139, pp.23-30, 2007.
[78] J. C. Choi, C. M. Park, J. K. Lee, and S. H. Kong, "A MEMS-based dual-axis tilt sensor using air medium," Transducers 2009, Denver, CO, June 21-25, 2009, pp. 300-303.
[79] S. J. Chen and C. H. Shen, “A novel two-axis CMOS accelerometer based on thermal convection,” IEEE Trans. Instrum. Meas., vol. 57, pp. 1572-1577, 2008.
[80] V. Milanovic, E. Bowen, M. E. Zaghloul, N. H. Tea, J. S. Suehle, B. Payne, and M. Gaitan, “Micromachined convective accelerometers in standard integrated circuits technology,” Applied Physics Letters, vol. 76, pp. 508-510, 2000.
[81] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer, and W. Lang, “Micromachined inclinometer with high sensitivity and very good stability,” Sens. Actuators A, vol. 97-98, pp. 125-130, 2002.
[82] C. S. Lin, and S. M. Kuo, “High-performance inclinometer with wide-angle measurement capability without damping effect,” IEEE MEMS’07, Kobe, Japan, Jan., 2007, pp. 585-588.
[83] T. Liu, P. Sen, and C. J. Kim, “Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices,” J. Microelectromech. Syst., vol. 21, pp.443-450, 2012.
[84] S.-S. Yun , D. H. Jeong, S. M. Wang, C. H. Je, M. L. Lee, G. Hwang, C. A. Choi, and J. H. Lee, “Fabrication of morphological defect-free vertical electrodes using a (110) silicon-on-patterned-insulator process for micromachined capacitive inclinometers,” J. Micromech. Microeng., vol. 19, pp. 035025, 2009.
[85] J. Liang, F. Kohsaka, X. Li, K. Kunitomo, and T. Ueda, “Characterization of a quarts MEMS tilt sensor with 0.001 precision,” Transducers’09, Denver, CO, June, 2009, pp. 308-310.
[86] J. Lenz and A. S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors J., vol. 6, pp. 631-649, 2006.
[87] Asahi Kasei Microdevices Semicond. Inc., AK8975 3-axis electronic compass. [Online]. Available: http://www.akm.com/akm/en/file/datasheet/AK8975.pdf
[88] Honeywell, Inc., HMC5883L, Three-axis digital compass IC. [Online]. Available: http://www.magneticsensors.com/three-axis-digital-compass.php
[89] A. L. Herrera-May, P. J. García-Ramírez, L. A. Aguilera-Cortés, J. Martínez-Castillo, A. Sauceda-Carvajal, L. García-González and E. Figueras-Costa, “A resonant magnetic field microsensor with high quality factor at atmospheric pressure,” J. Micromech. Microeng., vol. 19, 015016, 2009.
[90] S. Wattanasarn, K. Matsumoto, and I. Shimoyama, “3D Lorentz force magnetic sensor using ultra-thin piezoresistive cantilevers,” IEEE MEMS’13, Taipei, Taiwan, Jan. 20-24, 2013, pp. 693-696.
[91] Z. Kadar, A. Bossche, P.M. Sarro, J.R. Mollinger, “Magnetic-field measurement using an integrated resonant magnetic-field sensor,” Sens. Actuators A, vol. 70, pp. 225-232, 1998.
[92] H. Emmerich, and M. Schofthaler, “Magnetic field measurements with a novel surface micromachined magnetic-field sensor,” IEEE Trans. Electron Devices, vol. 47, pp. 972-977, 2000.
[93] B. Bahreyni, and C. Shafai, “A resonant micromachined magnetic field sensor,” IEEE Sensors J., vol. 7, pp. 1326-1334, 2007.
[94] J. Kyynäräinen, J. Saarilahti, H. Kattelus, A. Kärkkäinen, T. Meinander, A. Oja, P. Pekko, H. Seppa, M. Suhonen, and H. Kuisma, “A 3D micromechanical compass,” Sens. Actuators A, vol. 142 , pp. 561-568, 2008.
[95] M. Li, V. T. Rouf, M. J. Thompson, and D. A. Horsley, “Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications,” J. Microelectromech. Syst., vol. 21, pp. 1002-1010, 2012.
[96] V. T. Rouf, M. Li, and D. A. Horsley, “Area-efficient three axis MEMS Lorentz force magnetometer,” IEEE Sensors J., vol. 13, pp. 4474-4481, 2013.
[97] M. Li, E. J. Ng, V. A. Hong, C. H. Ahn, Y. Yang, T. W. Kenny, and D. A. Horsley, “Single-structure 3-axis Lorentz Force Magnetometer with sub-30nT/√Hz resolution,” IEEE MEMS’14, San Francisco, USA, Jan. 26-30, 2014, pp. 80-83.
[98] G. K. Fedder, R. T. Howe, T.-J. King Liu, and E. P. Quevy, “Technologies for Co-Fabricating MEMS and Electronics,” Proc. of IEEE, vol. 96, pp. 306-322, 2008.
[99] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet, “Monolithic piezoresistive CMOS magnetic field sensors,” Sens. Actuators A, vol. 103, pp. 23-32, 2003.
[100] B. Eyre, K. S. J. Pister, and W. Kaiser, “Resonant mechanical magnetic sensor in standard CMOS,” IEEE Electron Device Lett., vol. 19, pp. 496-498, 1998.
[101] C.-I. Chang, M.-H. Tsai, Y.-C. Liu, C.-M. Sun, and W. Fang, “Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces,” IEEE MEMS’13, Taipei, Taiwan, Jan. 20-24, 2013, pp. 193-196.
[102] D. Fang, “Low-Noise and Low-Power Interface Circuits Design for Integrated CMOS-MEMS Inertial Sensors,” Ph.D. Dissertation at university of Florida, 2006.
[103] A. Kisner, M. R. Aguiar, A. F. Vaz, A. Rojas, F.A. Cavarsan, J. A. Diniz, and L. T. Kubota, “Submicrometer-MOS capacitor with ultra high capacitance biased by Au nanoelectrodes,” Applied Physics A, vol. 94, pp.831-836, 2009.
[104] L. Moreno-Hagelsieb, D. Flandre, and J.-P Raskin, “Mechanical properties of anodic aluminum oxide for microelectromechanical system applications,” J. Vac. Sci. Technol. B, vol. 27, pp. 542-546, 2009.
[105] J.-I. Sohn, Y.-S. Kim, C. Nam, B. K. Cho, and T.-Y. Seonga, “Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes,” Appl. Phys. Lett., vol.87, pp.123115, 2005.
[106] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp.2770-2772, 1997.
[107] Quantum Focus Instruments Corporation, QFI InfraScope II, InfraScope User’s Manual.
[108] B. Alandry, L. Latorre, F. Mailly, and P. Nouet, “A fully integrated inertial measurement unit: application to attitude and heading determination,” IEEE Sensors J., vol. 11, pp. 2852-2860, 2011.
[109] Z. Bendekovic, P. Biljanovic, and D. Grgee, “Polysilicon temperature sensor,” Electrotechnical Conference, Tel-Aviv, May 18-20, 1998, pp.362-366.
[110] E. Vereshchagina, R. A. M. Wolters, and J. G. E Gardeniers, “The development of titanium silicide-boron-doped polysilicon resistivity temperature sensors,” J. Micromech. Microeng., vol. 21, 105022, 2011.
[111] STMicroelectronics, SEMICON Taiwan 2013.
[112] T. Fujita, Y. Fukumoto, F. Suzuki, and K. Maenaka, “SOI-MEMS sensor for multi-environmental sensing-system,” International Conference on Networked Sensing Systems’07, Braunschweig, Germany, June 6-8, 2007, pp. 146-149.
[113] C.-W. Cheng, K.-C. Liang, C.-H. Chu, D. A. Horsley, and W. Fang, “Single chip process for sensors implementation, integration and condition monitoring,” Transducers’13, Barcelona, Spain, June 16-20, 2013, pp. 730-733.
[114] G. Langfelder, C. Buffa, A. Frangi, A. Tocchio, E. Lasalandra, and A. Longoni, “Z-axis magnetometers for MEMS inertial measurement units using an industrial process,” IEEE Transactions on industrial electronics, vol. 60, pp. 3983-3990, 2013.
[115] V. K. Khanna, and R. K. Nahar, “Effect of moisture on the dielectric properties of porous alumina films,” Sensors and Actuators, vol. 5, pp. 187-198, 1984.
[116] L. Juhász,and J. Mizsei, “Humidity sensorstructures with thin film porous alumina for on-chip integration,” Thin Solid Films, vol. 517, pp. 6198-6201, 2009.
[117] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park,“Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B, vol. 141, pp. 441-446, 2009.
[118] P. V. Loeppert, and S. B. Lee, “SiSonicTM – The first commercialized MEMS microphone,” Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June, 2006, pp. 27-30.
[119] H. Guckel, J. J. Sniegowski, and T. R. Christenson, “Fabrication of micromechanical devices from polysilicon films with smooth surfaces,” Sens. Actuators A, vol. 20, pp. 117-122, 1989.
[120] X. Zhang, T.-Y. Zhang, M. Wong, and Y. Zohar, “Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing,” Sens. Actuators A, vol. 64, pp. 109-115, 1998.
[121] J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, S. Member, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multiPoly process,” J. Microelectromech. Syst., vol. 9, pp. 485-494, 2000.
[122] P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design, fabrication and testing of corrugated silicon nitride diaphragms,” J. Microelectromech. Syst., vol. 9, pp. 36-42, 1994.
[123] J. Miao, R. Lin, L. Chen, Q. Zou, S. Y. Lim, and S. H. Seah, “Design considerations in micromachined silicon microphones,” Microelectronics J., vol. 33, pp. 21-28, 2002.
[124] B. A. Ganjia and B. Y. Majlis, “Design and fabrication of a new MEMS capacitive microphone using a perforated aluminum diaphragm,” Sens. Actuators A, vol. 149, pp. 29-37, 2002.
[125] J. W. Weigold, T. J. Brosnihan, J. Bergeron, and X. Zhang, “A MEMS condenser microphone for consumer applications,” IEEE MEMS’06, Istanbul, Turkey, Jan. 22-26, pp. 86-89, 2006.
[126] J. J. Neumann Jr., and K. J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sens. Actuators A, vol. 95, pp. 175-182, 2002.
[127] C.-H. Huang, C.-H. Lee, T.-M. Hsieh, L.-C. Tsao, S. Wu, J.-C. Liou, M.-Y. Wang, L.-C. Chen, M.-C. Yip and W. Fang, “Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate,” Sensors, vol. 11, pp. 6257-6269, 2011.
[128] Q. Zou, Z. Li, and L. Liu, “Theoretical and experimental studies of single-chip-processed miniature silicon condenser microphone with corrugated diaphragm,” Sens. Actuators A, vol. 63, pp. 209-215, 1997.
[129] W. A. Ryan, M. Abry, and P. V. Loeppert, “Microphone having multiple transducer elements,” US Patent No. 8,170,244, 2012.
[130] W. Geiger, W.U.Butt, A. GaiBer, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier and W. Lang, “Decoupled Microgyros and the Design Principle DAVED”, IEEE MEMS’01, Interlaken, Switzerland, Jan., pp.170-173, 2001.
[131] Microsensors Inc., Costa Mesa, Calif., “Multi-Element Micro Gyro”, US Patent No. 6089089, 2000.
[132] Analog Devices, Inc., “Micromachined Gyros”, US Patent No. 6122961, 2000.
[133] H. Luo, X. Zhu, H. Lakdawala, L. R. Carley, and G. K. Fedder, “A copper CMOS-MEMS Z-axis gyroscope ,” IEEE MEMS’02, Las Vegas, NV, USA, pp.631-634, 2002.
[134] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B.Maihofer, S. Mahler, H. Munzel and U.Bischof, “A precision yaw rate sensor in silicon micromaching,” Transducers’97, Chicago, June.16-19, pp. 847-850, 1991.
[135] T. Scheiter, H. Kapels, K.-G. Oppermann, M. Steger, C. Hierold, W. M. Werner, and H.-J. Timme, “Full integration of a pressure-sensor system into a standard BiCMOS process,” Sens. Actuators A, vol. 67, pp. 211-214, 1998.
[136] S.-H. Tseng, Y.-C. Liu, C.-I. Chang, M.-H. Tsai, and W. Fang, “Design Aad Implementation of a CMOS-MEMS Altimeter,” The 6th Asia-Pacific Conference on Transducers and Micro-Nano Technology (APCOT 2012), Nanjing, China, July 8-11, 2012.