研究生: |
劉楊倫 Liu, Yang-Lun |
---|---|
論文名稱: |
Atomistic-Continuum Study of the Mechanical Properties and Behaviors of Carbon Nanotubes 以原子-連體力學模型研究奈米碳管機械性質與行為 |
指導教授: |
陳文華
Chen, Wen-Hwa 鄭仙志 Cheng, Hsien-Chie |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 122 |
中文關鍵詞: | 奈米碳管 、原子-連體模型 、分子力學 、分子結構力學 、凡得瓦力 、機械性質/行為 、徑向呼吸模式 |
外文關鍵詞: | Carbon Nanotube, Atomistic-Continuum Modeling, Molecular Mechanics, Molecular Structural Mechanics (MSM), van der Waals Interaction, Mechanical Properties/Behaviors, Radial Breathing Mode (RBM) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
An explosive growth in research has excited an extraordinary degree of interest in material science on finding their advanced physical properties/behaviors and engineering applications ever since the discovery of carbon nanotubes (CNTs). Due to the reported exceptionally remarkable physical/mechanical properties, such as low density, high aspect ratio, high stiffness, high strength, and excellent electrical/thermal properties, they have shown great potential for a wide range of applications. Despite of the claimed advantageous technical features, it is essential to have a thorough and clear comprehension of them prior to the realization and enhancement of their engineering application.
A recent development in computational methods based on equivalent continuum modeling (ECM) has allowed an effective and efficient characterization and simulation of the mechanical properties and behaviors of a larger scale of nano-structured systems in a longer time span. In principle, the ECM approach, such as the molecular structural mechanics (MSM) model, transforms chemical bonds between atoms in molecular mechanics into a continuum model using finite element (FE) methods. However, there are certain technical insufficiencies and shortcomings in the existing ECM approach, such as the incapability of handling the surface and temperature effects. Thus, the main goal of the study is to develop an advanced ECM model that can take into account the surface and temperature effects for assessing the axial/radial mechanical properties and dynamic/static behaviors of CNTs. The study starts from the derivation of the axial mechanical properties of CNTs. The focus is placed on the study of the influences of the surface effect and the in-layer non-bonded van der Waals (vdW) atomistic interactions on the mechanical properties of CNTs. To achieve the goal, an atomistic-continuum modeling (ACM) approach is proposed. The ACM approach incorporates molecular dynamics (MD) simulation for simulating the initial relaxed unstrained configuration due to the surface effect, and an improved MSM model for simulating the effect of the in-layer vdW interactions on the mechanical properties and behaviors of CNTs. In the improved MSM model, the covalent bonds between two linking carbon atoms are simulated by a pseudo-round beam element while the associated non-bonded interactions by a non-linear spring element. Next, the temperature effect is also taken into consideration in the present modeling through Badger’s rules together with Nos□-Hoover thermostat for constant temperature MD simulation. The effectiveness of the ACM approach is demonstrated through the comparison with the theoretical/experimental data available in literature. By the approach, the axial Young’s modulus, shear modulus, and vibrational/buckling behaviors of CNTs are calculated, where the influences of the in-layer vdW interactions, temperature and surface effect are also discussed thoroughly.
The study also attempts to explore the radial mechanical properties and behaviors of CNTs. In view of the technical disadvantages of the MSM model, such as the theoretical overestimate of the minor axis bending stiffness of the cross section of the covalent bonds in CNTs, thereby potentially leading to an inaccurate prediction of the corresponding radial mechanical properties, a modified MSM model is introduced. The proposed model is derived through a major modification on the bending stiffness of the covalent bond in the minor principal centroidal axis of the section based on the inversion energy in molecular mechanics. Specifically, the interactions between two carbon atoms are modeled with continuum pseudo-rectangular beams, rather than round ones, based on the second generation force field while the non-bonded vdW interactions among atoms are simulated with spring elements based on the Lennard-Jones (L-J) potential. The pseudo-rectangular beam consists of a different bending rigidity along the two principal centroidal axes of the cross section, the stiffness parameters of which are estimated based on the bond-angle variation energy and the weak inversion energy in molecular mechanics. By the approach, the radial mechanical properties of CNTs, such as the radial modulus, radial buckling load and radial deformation, are calculated. To validate the proposed MSM model, the present results are compared with those of the original MSM model and the published theoretical and experimental data.
At last, the modified MSM model is also extended to the study of the radial breathing mode (RBM) frequencies and mode shapes of CNTs. The focus of the study is placed upon exploring the characteristics and differences of the RBM/RBM-like modes of the CNTs resulted from their large diameter-length aspect ratio and/or asymmetric atomic configuration, and also, their temperature effect. By the approach, their dependence on the layer number, aspect ratio and chirality of the CNTs and temperature is also assessed. The validity of these calculated results is extensively confirmed through comparison with the literature theoretical and experimental data.
The present simulation results demonstrate several fundamental nano-effects and physical phenomenona in CNTs, which are valuable for further fundamental researches or applications of CNTs. It is worth mentioning that the applicability of the proposed methodology would not be limited to an SWCNT system or CNT system but can be extended to other nanosystems.
自1991年奈米碳管被發現後,許多研究者針對其先進的物理性質與工程應用進行深入且廣泛的研究。由於奈米碳管具有優越的物理與機械性質,如低密度,高深寬比,高強度,以及特殊的電/熱性質,使其在各方面的應用具有極高的潛力。而為了實現其實際的工程應用,吾人需對其基本的物理與機械性質有清楚且充分的瞭解。
在最近幾年發展的計算方法中,等效連體力學模型(Equivalent Continuum Modeling, ECM)可針對具有大尺度之奈米結構的機械性質與行為進行有效且快速的分析與計算。基本上,ECM方法,如分子結構力學(Molecular Structure Mechanics, MSM)模型,主要是將原子間的化學鍵轉化為一等效的連體模型,再利用有限單元法(Finite Element Method)進行計算。然而,在現有的ECM方法中仍有些不足之處,如無法考慮表面/溫度效應(Surface/Temperature Effect)等。因此,本論文主要的目的為提出一更先進的ECM模型,其中在探討奈米碳管之機械性質與行為時可考慮表面/溫度之效應。本論文首先提出一原子-連體模型(Atomistic-Continuum Modeling, ACM)方法以探討表面效應與層內凡得瓦力(in-layer van der Waals (vdW) interaction)對奈米碳管之軸向機械性質的影響。而ACM方法主要包含分子動力學(Molecular Dynamics, MD)與改良型MSM模型,分別模擬由表面效應所造成的初始變形以及層內凡得瓦力。在改良型MSM模型中,原子間的鍵結力與非鍵結力分別由一等效的圓形樑單元以及一非線性彈簧單元來模擬。接著,溫度效應則由Badger’s rules以及定溫MD 模擬搭配Nos□-Hoover熱容法。此ACM方法之正確性主要由文獻中之理論及實驗的結果來驗證。由此方法可計算出奈米碳管之軸向楊氏模數(axial Young’s modulus),剪切模數(shear modulus),以及振動/挫曲性質,其中並討論層內凡得瓦力,溫度以及表面效應之影響性。
此外,本論文也針對奈米碳管之徑向的相關機械性質進行探討。由於在原始MSM模型中,等效樑單元之斷面均假設為圓形,然而此假設使得樑單元在徑向之彎曲強度過強,造成其徑向機械性質的計算錯誤。因此,吾人提出修正型MSM模型,主要根據分子力學(molecular mechanics)中之反轉能(inversion energy)來計算等效樑單元在徑向之彎曲強度。其中,原子間之鍵結力改由矩形樑來模擬,而凡得瓦力則由彈簧單元根據Lennard-Jones (L-J)勢能函數來模擬。由此方法,可計算出奈米碳管徑向之機械性質,如徑向模數,徑向挫曲,以及徑向變形。為了驗證此修正型MSM模型,吾人將現有的結果與文獻中之實驗以及理論之結果作比較。
最後,此修正型MSM模型也進一步用來探討奈米碳管之徑向呼吸模式(Radial Breathing Mode, RBM)之頻率與模態。其主要探討RBM與類RBM(RBM-like)振動模態之特性以及其中之差異。由此方法並可得到奈米碳管之層數,長寬比,幾何形式,以及溫度對RBM頻率之影響。所得到結果也與許多文獻之結果作比較。
本論文所得到的結果顯示出許多奈米碳管中的奈米效應及物理性質,此結果相當有助於奈米碳管之基礎研究及其應用。本文所提出的模型也可更進一步運用在其他奈米材料之各種物理性質的探討。
[1] Abrams, Z. R., and Hanein, Y., 2007, “Radial deformation measurements of isolated pair of single-walled carbon nanotubes,” Carbon, Vol.45, pp.738-743.
[2] Agrawal, P. M., Sudalayandi, B. S., Raff, L. M., and Komanduri, R., 2008, “Molecular dynamics (MD) simulations of the dependence of C-C bond length and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT),” Computational Material Science, Vol. 41, pp.450-456.
[3] Allinger, N. L., 1977, “MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms,” Journal of the American Chemical Society, Vol. 99, pp. 8127-8134.
[4] Allinger, N. L., Yuh, Y. H., and Lii J. H., 1989, “The MM3 force field for hydrocarbons,” Journal of the American Chemical Society, Vol. 23, pp. 8551-8582.
[5] Badger, R. M., 1934, “A relation between internuclear distances and bond force constants,” Journal of Chemistry Physics, Vol. 2, pp. 128-131.
[6] Basinski, Z. S., Duesberry, M. S., and Taylor, R., 1971, “Influence of shear stress on screw dislocations in a model sodium lattice,” Canadian Journal of Physics, Vol. 49, pp. 2160-2180.
[7] Berber, S., Kwon, Y. K., and Tomanek, David, 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letter, Vol. 84, pp.4613-4616.
[8] Brenner, D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Physical Review B, Vol. 42, pp. 9458-9471.
[9] Burkert, U. and Allinger, N. L., 1982, “Molecular Mechanics,” American Chemical Society.
[10] Cao, G. X., Chen, X., and Kysar, J. W., 2005, “Strain sensing of carbon nanotubes: Numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes,” Physical Review B, Vol. 72, pp. 195412.
[11] Chandraseker, Karthick and Mukherjee, Subrata, 2007, “Atomistic-continuum and ab initio estimation of the elastic modulus of single-walled carbon nanotubes,” Computational Material Science, Vol. 40, pp.147-158.
[12] Chang, I. L. and Chiang, B. C., 2009, “Mechanical Buckling of Single-Walled Carbon Nanotubes: Atomistic Simulations”, Journal of Applied Physics, Vol. 106, pp.114313.
[13] Chang, T. C. and Gao, H. J., 2003, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1059-1074.
[14] Chen, W. F. and Lui, E. M., 1987, Structural Stability Theory and Implementation, Elseriver Science Publishing Co. Inc, New York.
[15] Chen, W. H., Cheng, H. C., and Hsu, Y. C., 2007, “Mechanical Properties of Carbon Nanotube Using Molecular Dynamics Simulations with the Inlayer van der Waals Interactions, “Computer Modeling in Engineering & Sciences, Vol.20, No.2, pp.123-145.
[16] Chen, W. H., Cheng, H. C., and Liu, Y. L., 2010, “Radial Mechanical Properties of Single-Walled Carbon Nanotubes Using Modified Molecular Structure Mechanics,” Computational Materials Science, Vol. 47, pp.985-993.
[17] Cheng, H. C., Liu, Y. L., Hsu , Y. C., and Chen, W. H., 2009a, “Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes,” International Journal of Solid and Structures Vol. 46, pp.1695-1704.
[18] Cheng, H. C., Hsu, Y. C., and Chen, W. H., 2009b, “The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes,” Computers, Materials, & Continua, Vol. 11, No. 2, pp. 1279-146. (Special issue in honor of the 60th Anniversary of Prof. Wen-Hwa Chen)
[19] Cheng, H. C., Liu, Y. L., Wu, C. H., and Chen, W. H., 2010, “On Radial Breathing Vibration of Carbon Nanotubes,” Computer Methods in Applied Mechanics and Engineering, doi: 10.1016/j.cma.2010.05.003.
[20] Chiang, K. N., Chou, C. Y., Wu, C. J., Huang, C. J., and Yew, M. C., 2008, “Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential,” Computer Modeling in Engineering and Science, Vol. 37, No. 1, pp. 85-96.
[21] Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., 1999, “Fully sealed, highbrightness carbon-nanotube field-emission display,” Applied Physics Letters, Vol. 75, pp. 3129–3131.
[22] Cornwell, C. F. and Wille, L. T., 1997, “Elastic properties of single-walled carbon nanotubes in compression,” Solid State Communication, Vol. 101, pp. 555-558.
[23] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, Jr., K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., 1995, “A second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society, Vol. 117, pp. 5179-5197.
[24] Damnjanović, M, Dobardžić, E, and Miloŝević, I, 2004, “Chirality dependence of the radial breathing mode: a simple model,”, Journal of Physics: Condensed Matter, Vol. 16, pp.L505-L508.
[25] Dobardžić, E., Milošević, I., Nikolić, B., Vuković, T., and Damnjanović, M., 2003, “Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations,” Physical Review B Vol.68, pp.045408.
[26] Dresselhaus, M. S., Dresselhaus, G., and Saito, R., 1995, “Physics of carbon nanotubes,” Carbon, Vol. 33, pp. 883-891.
[27] Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., 1996, “Science of Fullerenes and Carbon Nanotubes,” Academic Press, San Diego.
[28] Dresselhaus, M. S., Dresselhaus, G., Saitoc, R., and Joriod, A., 2005, “Raman spectroscopy of carbon nanotubes,” Physics Reports, Vol. 409, pp.47-99.
[29] Ebrahimi, Ali, Ehteshami, Hossein, and Mohammadi, Marzie, 2008, “Density functional calculations of response of single-walled armchair carbon nanotubes to axial tension,” Computational Material Science, Vol. 41, pp.486-492.
[30] Elliott, J. A., Samdler, J. K. W., Windle, A. H., Young, R. J., and Shaffer, Milo S. P., 2004, “Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent,” Physical Review Letters, Vol. 92, pp. 095501.
[31] Falvo, M. R., Clary, G. J., Taylor II, R. M., Chi, V., Brooks Jr., F. P., Washbum, S., and Superfine, R., 1997, “Bending and buckling of carbon nanotubes under large strain,” Nature, Vol. 389, pp.582-584.
[32] Gao, G. H., Cagin, T., and Goddard III, W. A., 1998, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, Vol. 9, pp. 184-191.
[33] Gartstein, Y. N., Zakhidov, A. A., and Baughman, R. H., 2002, “Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes,” Physical Review Letters, Vol.89, pp.045503.
[34] Goupalov, S. V., 2005, “Chirality dependence of the Raman cross section of carbon nanotubes,” Physical Review B, Vol.71, pp.153404.
[35] Guduru, P. R. and Xia, Z., 2007, “Shell Buckling of Imperfect Multiwalled Carbon Nanotubes—Experiments and Analysis,” Experimental Mechanics, Vol. 47, pp.153-161.
[36] Hafner, J. H., Cheung, C. L., and Lieber, C. M., 1999, “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips,” Journal of American Chemical Society, Vol. 121, pp. 9750-9751.
[37] Halicioglu, T., 1998, “Stress calculations for carbon nanotubes,” Thin Solid Films, Vol. 312, pp. 11.
[38] Harris, P. J. F., 1999, “Carbon nanotubes and related structures,” Cambridge University Press.
[39] Hernandez, E., Goze, C., Bernier, P., and Rubio, A., 1998, “Elastic properties of C and B¬xCyNz¬ composite nanotubes,” Physical Review Letters, Vol. 80, pp. 4502-4505.
[40] Hertel, T., Walkup, R. E., and Avouris, P., 1998, “Deformation of carbon nanotubes by surface van der Waals forces,” Physical Review B, Vol.58, pp.13870-13873.
[41] Hong, Seunghun and Sung, Myung, 2007, “Nanotube Electronics: A flexible approach to mobility,” Nature Nanotechnology, Vol.2, pp. 207-208.
[42] Hoover, W. G., 1985, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, Vol. 31, pp.1695.
[43] Iijima, S., 1991, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58.
[44] Iijima, S. and Ichihashi, T., 1993, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605.
[45] Iijima, S., Brabec, C., Maiti, A., and Bernholc, L., 1996, “Structural flexibility of carbon nanotubes,” Journal of Chem. Phys., Vol. 104, pp.2089-2092.
[46] Jiang, H, Liu, B., Huang, Y., and Hwang, K. C., 2004, “Thermal expansion of single-wall carbon nanotubes,” Journal of Engineering Materials Technology, Vol.126, pp.265-270.
[47] Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., 2001, “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering,” Physical Review Letters, Vol. 86, pp.1118-1121.
[48] Kasti, N. A., 2007, “Zigzag carbon nanotubes-Molecular/structural mechanics and finite element method,” International Journal of Solid and Structures, Vol. 44, pp. 6914-6929.
[49] Keblinski, P., Nayak, S. K., Zapol, P., and Ajayan, P. M., 2002, “Charge Distribution and Stability of Charged Carbon Nanotubes,” Physical Review Letters, Vol. 89, pp. 255503.
[50] Kelly, B. T., 1981, “Physic of Graphite,” Applied Science, London.
[51] Kim, Y. H., Sim, H. S., and Chang, K. J., 2001, “Electronic structure of collapsed C, BN, and BC3 nanotubes,” Current Applied Physics, Vol. 1, pp.39-44.
[52] Kociak, M., Kasumov, A. Y., Gu□ron, S., Reulet, B., Khodos, I. I., Gorbatov, Y. B., Volkov, V. T., Vaccarini, L., and Bouchiat, H., 2000, “Superconductivity in Ropes of Single-Walled Carbon Nanotubes,” Physical Review Letters, Vol. 86, pp. 2416-2419.
[53] Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., 1985, “C60 : Buckminsterfullerene,” Vol. 318, pp162-163.
[54] Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. ,and Treacy, M. M. J., 1998, “Young’s modulus of single-walled nanotubes,” Physical Review B, Vol. 58, pp. 14013-14019.
[55] Kudin, K. N., Scuseria, G. E., and Yakobson, B. I., 2001, “C2F, BN and C nanoshell elasticity from ab initio computations,” Physical Review B, Vol. 64, pp. 235406(1-10).
[56] K□rti, J., Kresse, G., and Kuzmany, H., 1998, “First-principles calculations of the radial breathing mode of single-wall carbon nanotubes,” Physical Review B, Vol.58, pp.8869-8872.
[57] K□rti, J., Z□lyomi, V., Kertesz, M., and Sun, G. Y., 2003, “The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour,” New Journal of Physics, Vol.5, pp.125.1-125.12.
[58] Lennard-Jones, J. E., 1924, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of Royal Society (London), Vol. 106A, pp. 441.
[59] Li, C. Y. and Chou, T. W., 2003a, “A structural mechanics approach for the analysis of carbon nanotubes,” International Journal of Solid and Structures, Vol. 40, pp. 2487-2499.
[60] Li, C. Y. and Chou, T. W., 2003b, “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces,” Composites Science and Technology, Vol. 63, pp. 1517-1524.
[61] Li, C. Y. and Chou, T. W., 2004a, “Vibrational behavior of multiwalled-carbon-nanotube-based nanomechanical resonators,” Applied Physics Letters, Vol. 84, pp. 121-123.
[62] Li, C. Y. and Chou, T. W., 2004b, “Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach,” Mechanics of Materials, Vol. 36, pp. 1047-1055.
[63] Li, C. Y. and Chou, T. W., 2004c, “Elastic properties of single-walled carbon nanotubes in transverse directions,” Physical Review B, Vol. 69, pp. 073401.
[64] Li, C. Y. and Chou, T. W., 2006a, “Charge-induced strains in single-walled carbon nanotubes,” Nanotechnology, Vol.17, pp. 4624-4628.
[65] Li, C. Y. and Chou, T. W., 2006b, “Electrostatic charge distribution on single-walled carbon nanotube,” Applied Physics Letters, Vol. 89, pp. 063103-1.
[66] Li, C. Y. and Chou, T. W., 2007, “Theoretical studies on the charge-induced failure of single-walled carbon nanotubes,” Carbon, Vol. 45, pp. 922-930.
[67] Lier, G. V., Alsenoy, C. V., Doran, V. V. and Geerlings, P., 2000, “Ab initio study of the elastic properties of single-walled carbon nano¬tubes and grapheme,” Chemical Physics Letters, Vol. 326, pp. 181-185.
[68] Liew, K. M., He, X. Q., and Wong, C. H., 2004, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics,” Acta Materialia, Vol. 52, pp. 2521-2527.
[69] Liu, H. J. and Chan, C. T., 2002, “Properties of 4 □ carbon nanotubes from first-principles calculations,” Physical Review B Vol.66, pp.115416.
[70] Liu, Y. J. and Chen, X. L., 2003 “Evaluations of the effective material properties of carbon nanotube-based composite using a nano¬scale representative volume element,” Mechanics of Materials, Vol. 35, pp. 69-81.
[71] Lordi, V. and Yao, N., 1998, “Radial compression and controlled cutting of carbon nanotubes,” Journal of Chemical Physics, Vol. 109, pp.2509-2512.
[72] Lourie, O. and Wagner, H. D., 1998, “Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension,” Applied Physics Letters, Vol.73, pp. 3527-3529.
[73] Lu, J. P., 1997, “Elastic properties of carbon nanotubes and nano¬ropes,” Physical Review Letters, Vol. 79, pp. 1297-1300.
[74] Maultzsch, J., Telg, H., Reich, S., and Thomsen, C., 2005, “Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment,” Physical Review B, Vol. 72, pp.205438.
[75] Mazzoni, Mario S. C., and Chacham, H., 2000, “Bandgap closure of flattened semiconductor carbon nanotubes: A first-principle study,” Applied Physics Letters, Vol. 76, pp.1561-1563.
[76] Meirovich, L., 1986, “Elements of Vibration Analysis 2nd ed.,” McGraw-Hill, New York.
[77] Milnera, M., K□rti, J., Hulman, M., and Kuzmany, H., 2000, “Periodic Resonance Excitation and Intertube Interaction from Quasicontinuous Distributed Helicities in Single-Wall Carbon Nanotubes,” Physical Review Letters, Vol. 84, pp.1324-1327.
[78] Muthaswami, Lata, Zheng, Y. G., Vajtai, Robert, Shehkawat, G., Ajayan, Pulickel, and Geer, Robert E., 2007, “Variation of Radial Elasticity in Multiwalled Carbon Nanotubes,” Nano Letters, Vol.7, pp.3891-3894.
[79] Mohr, M., Mach□n, M., Thomsen, C., Milošević, I., and Damnjanović, M., 2007, “Mixing of the fully symmetric vibrational modes in carbon nanotubes,” Physical Review B Vol.75, pp.195401.
[80] Nasdala, L. and Ernst, G., 2005, “Development of a 4-node finite element for the computation of nano-structured materials,” Computational Material Science, Vol. 33, pp.443-458.
[81] Normile, D, 1999, “Technology-nanotubes generate full-color displays,” Science, Vol. 286, pp.2056–2057.
[82] Nos□, S., 1984, “A molecular dynamics method for simulation in the canonical ensemble,” Molecular physics, Vol. 52, pp. 255.
[83] Odegard, G. M., Gates, T. S., Nicholson, L. M., and Wise, K. E., 2002, “Equivalent-continuum modeling of nano-structured materials,” Composites Science and Technology, Vol. 62, pp. 1869-1880.
[84] Ozaki, T., Iwasa, Y., and Mitani, T., 2000, “Stiffness of single-walled carbon nanotubes under large strain,” Physical Review Letters, Vol. 84, pp. 1712-1715.
[85] Park, C. J., Kim, Y. H., and Chang, K. J., 1999, “Band-gap modification by radial deformation in carbon nanotubes,” Physical Review B, Vol. 60, pp.10656-10659.
[86] Poncharal, P., Wang, Z. L., and Ugarte, D., 1999, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes,” Science, Vol.283, pp. 1513-1516.
[87] Popov, V. N. and Van Doren, V. E., 2000, “Elastic properties of single-walled carbon nanotubes,” Physical Review B, Vol.61, pp. 3078-3084.
[88] Qian, D., Wagner, G. J., Liu, W. K., Yu, M. F., and Ruoff, R. S., 2002, “Mechanics of carbon nanotubes,” Applied Mechanics Review, Vol. 55, pp. 495-533.
[89] Rappe, A. K. and Casewit, C. J., 1997, “Molecular Mechanics across chemistry,” University Science Books.
[90] Raravikar, N. R., Keblinski, P., Rao, A. M., Dresselhaus, M. S., Schadler, L. S., and Ajayan, P. M., 2002, “Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes,” Physical Review B Vol.66, pp.235424.
[91] Reich, S. and Thomsen, C., 2002, “Elastic properties of carbon nanotubes under hydrostatic pressure,” Physical Review B, Vol. 65, pp.153407.
[92] Robertson, D. H., Brenner, D. W., and Mintmire, J. W., 1992, “Energetics of nanoscale graphitic tubules,” Physical Review B, Vol. 45, pp. 2592-2595.
[93] Ru, C. Q., 2000a, “Effect of van der Waals forces on axial buckling of a double-walled carbon nanotubes,” Journal of Applied Physics, Vol.87, pp. 7227-7231.
[94] Ru, C. Q., 2000b, “Effective bending stiffness of carbon nanotubes,” Physical Review B, Vol.62, pp. 9973-9976.
[95] Ru, C. Q., 2000c, “Elastic buckling of single-walled carbon nanotube ropes under high pressure,” Physical Review B, Vol.62, pp. 10405-10408.
[96] Ruoff, Rodney S., Tersoff, J., Lorents, C., Subramoney, Shekhar, and Chan, Bryan, 1993, “Radial deformation of carbon nanotubes by van der Waals forces,” Nature, Vol. 364, pp.514-516.
[97] Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., and Kulik, A. J., 1999, “Elastic and shear moduli of single-walled carbon nano¬tube ropes,” Physical Review Letters, Vol. 82, pp. 944-947.
[98] Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordejon, P., 1999, “Ab Initio structural, elastic, and vibrational properties of carbon nanotubes,” Physical Review B, Vol. 59, pp. 12678-12688.
[99] Seidel, Gary D. and Lagoudas, Dimitris C., 2006, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mechanics of Materials, Vol. 38, pp.884-907.
[100] Shen, S. and Atluri, S. N., 2004, “Atomic-level Stress Calculation and Continuum-Molecular System Equivalence,” CMES: Computer Modeling in Engineering and Science, Vol. 6, pp. 91-104.
[101] Shen, W. D., Jiang, B., Han, B. S., and Xie, S. S., 2000, “Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope,” Physical Review Letters, Vol. 84, pp. 3634-3637.
[102] Sohi, A. N. and Naghdabadi, R., 2007, “Torsional buckling of carbon nanopeapods,” Carbon, Vol. 45, pp.952-957.
[103] Souza Filho, A.G., Chou, S. G., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M. S., An, L., Liu, J., Swan, A. K., □nl□, M. S., Goldberg, B. B., Jorio, A., Gr□neis, A., and Saito, R., 2004, “Stokes and anti-Stokes Raman spectra of small diameter isolated carbon nanotubes,” Physical Review B, Vol. 69, pp.115428.
[104] Stillinger, F. H. and Weber, T. A., 1985, “Computer Simulation of Local Order in Condensed Phase of Silicon,” Physical Review B, Vol. 31, pp. 5262-5271.
[105] Sun, G. Y., Kurti, J., Kertesz, M, and Baughman R. H., 2002, “Dimensional changes as a function of charge injection in single-walled carbon nanotubes,” Journal of the American Chemical Society, Vol. 124, pp.15076-15080.
[106] Tersoff, J, 1988, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Physical Review B, Vol. 37, pp. 6991-7000.
[107] Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., 1996, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, Vol. 381, pp. 678-680.
[108] Vaccarini, L., Goze, C., Henrard, L., Hernandez, E., Bernier, P., and Rubio, A., 2000, “Mechanical and electronic properties of carbon and boron-nitride nanotubes,” Carbon, Vol. 38, pp. 1681-1690.
[109] Wang, C. Y., Ru, C. Q., and Mioduchowski, A., 2003, “Axially compressed buckling of pressured multiwall carbon nanotubes,” International Journal of Solids and Structures, Vol.40, pp. 3893-3911.
[110] Wang, H. Y., Zhao, M., and Mao, S. X., 2006, “Radial moduli of individual single-walled carbon nanotubes with and without electric current flow,” Applied Physics Letters, Vol.89, pp.211906.
[111] Wang, X. F., Xu, Z. J., and Zhu, Z. Y., 2007, “Reversible mechanical bistability of carbon nanotubes under radial compression,” Chemical Physics, Vol. 334, pp.144-147.
[112] Wang, Y., Wang, X. X., Ni, X. G., and Wu, H. A., 2005, “Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes,” Computational Materials Science, Vol. 32, pp. 141-146.
[113] Waters, J. F., Guduru, P. R. , and Xu, J. M., 2006, “Nanotubes mechanics– Recent progress in shell buckling mechanics and quantum electromechanical coupling,” Composites Science and Technology, Vol.66, pp. 1141-1150.
[114] Wong, E. W., Sheehan, P. E., and Lieber, C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nano¬tubes,” Science, Vol. 277, pp. 1971-1975.
[115] Wu, C. J., Chou, C. Y., Han, C. N., and Chiang K. N., 2009, “Estimation and Validation of Elastic Modulus of Carbon Nanotubes Using Nano-Scale Tensile and Vibrational Analysis,” Computer Modeling in Engineering and Science, Vol. 41, No. 1, pp. 49-68.
[116] Xiao, J. R., Gama, B. A., and Gillespie Jr. J. W., 2005, “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” International Journal of Solid and Structures, Vol. 42, pp. 3075-3092.
[117] Xin, H., Han, Q., and Yao, X. H., 2007, “Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes,” Carbon, Vol. 45, pp.2486-2495.
[118] Yakobson, B. I., Brabec, C. J., and Bernholc, J., 1996, “Nano¬mechanics of carbon tubes: instabilities beyond linear range,” Physical Review Letters, Vol. 76, pp. 2511-2514.
[119] Yakobson, B. I., Campbell, M. P., Brabec C. J., and Bernholc, J., 1997, “High strain rate fracture and C-chain unraveling in carbon nanotubes,” Computational Materials Sciences, Vol. 8, pp.341-348.
[120] Yao, N. and Lordi, V., 1998, “Young’s modulus of single-walled carbon nanotubes,” Journal of Applied Physics, Vol. 84, pp. 1939-1943.
[121] Yu, M. F., Lourie, O., Dyer, M., Moloni, K., Kelly, T., and Ruoff, R. S., 2000a, “Strength and breaking mechanism of multiwalled carbon nano¬tubes under tensile load,” Science, Vol. 287, pp. 637-640.
[122] Yu, M. F., Kowalewski, T., and Ruoff, R. S., 2000b, “Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force,” Physical Review Letters, Vol. 85, pp.1456-1459.
[123] Zhang, C. L. and Shen, H. S., 2006, “Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation,” Carbon, Vol. 44, pp.2608-2616.
[124] Zhang, Y. C., Chen, X., and Wang, X., 2008a, “Effect of temperature on mechanical properties of multi-walled carbon nanotubes,” Composite Science and Technology, Vol.68, pp.572.
[125] Zhang, Y. Q., Liu, X., and Zhao, J. H., 2008b, “Influence of temperature change on column buckling of multiwalled carbon nanotubes,” Physics Letters A, Vol. 372, pp.1676.
[126] Zhou, G., Duan, W., and Gu, B., 2001, “First-principles study on morphology and mechanical properties of single-walled carbon nano¬tube,” Chemical Physics Letters, Vol. 333, pp. 344-349.
[127] Zhou, L. G. and Shi, S. Q., 2002, “Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage,” Computational Material Sciences, Vol. 23, pp.166-174.