簡易檢索 / 詳目顯示

研究生: 張祐嘉
Chang, Yu-Jia
論文名稱: 好奇心驅動的探索行為在果蠅中的研究:性別、年齡與多巴胺神經元
Curiosity-driven exploration in Drosophila melanogaster: perspectives on gender, age, and dopaminergic neurons
指導教授: 郭崇涵
Kuo, Tsung-Han
口試委員: 廖品超
Liao, Pin-Chao
劉翰璇
Liu, Han-Hsuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 37
中文關鍵詞: 好奇心果蠅多巴胺神經元行為分析探索行為
外文關鍵詞: Curiosity, Drosophila, Dopaminergic neurons, Behavioral assay, Exploratory behavior
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 好奇心被定義為一種探索和尋求新奇事物的內在動機,同時還是一種重要但尚未被充分研究的動機,對動物來說更是如此。現有研究主要聚焦在動物如何因應外部刺激和潛在獎勵而非受到內在好奇心的驅動進行探索行為。這些研究往往忽略了因運動障礙而在物理上阻礙探索的情況,可能無法完全反映動物與新奇事物互動的內在動機。在這篇論文中,我們開發出一種行為分析方式:通過測量黑腹果蠅(Drosophila melanogaster)進入新環境的意願來評估由好奇心驅動的探索行為。藉由這種分析方法,我們發現雄性果蠅表現出比雌性更高水平的好奇心驅動探索行為,並且觀察到這種行為在雄性果蠅中與年齡呈正相關;我們還發現視覺線索對該行為的影響有限。除此之外,通過UAS/GAL4系統,我們發現多巴胺神經元與好奇心驅動的探索行為之間可能存在關聯性。總體來說:我們的研究結果展示了不同條件如何影響好奇心驅動的探索行為,並突出了特定神經傳導物質的潛在作用。我們希望這一分析方法能促進對果蠅探索行為和好奇心驅動行為的深入理解,並為更廣泛地研究動物好奇心提供一種簡單而有效的方法。


    Curiosity, defined as an intrinsic motivation to explore and seek novelty, is a fundamental yet not well-studied motivation, especially in animals. Existing research primarily focuses on how animals engage in exploratory behavior in response to external stimuli and potential rewards, rather than being driven by intrinsic curiosity. These studies often overlook locomotion disabilities that physically hinder exploration and may not fully reflect the animals' intrinsic motivation to engage with novelty. Therefore, in this report, we developed a behavioral assay to assess curiosity-driven exploration in Drosophila melanogaster by measuring their willingness to enter a novel environment. With the assay, we found that male flies demonstrated higher levels of curiosity-driven exploration than females and observed a positive correlation between curiosity-driven exploratory behavior and the age of male flies, while visual cues were found to have limited influence on this behavior. Through the UAS/GAL4 system, we identified a potential association between dopaminergic neurons and curiosity-driven exploratory behavior. Our findings demonstrate how different variables influence curiosity-driven exploration and highlight the possible role of specific neurotransmitters. We anticipate that our assay will contribute to a deeper understanding of exploratory and curiosity-driven behaviors in flies and provide a simpler yet effective approach to study animal curiosity more broadly.

    Abstract----------i 摘要----------ii 致謝----------iii Contents----------1 List of Figures----------2 Introduction----------3 Materials and Methods----------8 Results----------11 A new assay was established to evaluate fly curiosity----------11 The curious exploration behavior of flies is not a random behavior----------11 Older males exhibit more curious exploratory behavior than younger males----------12 Visual cues appear to have a limited effect on curiosity-driven exploration in flies----------13 UAS/GAL4 system suggested the involvement of dopaminergic neurons in male fly curiosity-driven exploration----------14 Discussion----------16 Figures----------26 References----------35

    Busto, G. U., et al. (2010). "Olfactory Learning in Drosophila." Physiology 25(6): 338-346.
    Calhoun, A. J. and B. Y. Hayden (2015). "The foraging brain." Current Opinion in Behavioral Sciences 5: 24-31.
    Carey, J. R., et al. (2006). "Age-specific and lifetime behavior patterns in Drosophila melanogaster and the Mediterranean fruit fly, Ceratitis capitata." Exp Gerontol 41(1): 93-97.
    Cheong, H. S., et al. (2020). "Multi-regional circuits underlying visually guided decision-making in Drosophila." Curr Opin Neurobiol 65: 77-87.
    Coleman, K. and D. Wilson (1998). "Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific." Anim Behav 56(4): 927-936.
    Davis, R. T., et al. (1950). "Performance of normal and brain-operated monkeys on mechanical puzzles with and without food incentive." The Pedagogical Seminary and Journal of Genetic Psychology 77: 305-311.
    Daw, N. D., et al. (2006). "Cortical substrates for exploratory decisions in humans." Nature 441(7095): 876-879.
    de la Flor, M., et al. (2017). "Drosophila increase exploration after visually detecting predators." PLOS ONE 12(7): e0180749.
    Fiala, A. (2007). "Olfaction and olfactory learning in Drosophila: recent progress." Current Opinion in Neurobiology 17(6): 720-726.
    Friggi-Grelin, F., et al. (2003). "Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase." J Neurobiol 54(4): 618-627.
    Giraldo, D., et al. (2019). "Correcting locomotion dependent observation biases in thermal preference of Drosophila." Sci Rep 9(1): 3974.
    Goller, F. and H. Esch (1990). "Comparative Study of Chill-Coma Temperatures and Muscle Potentials in Insect Flight Muscles." Journal of Experimental Biology 150(1): 221-231.
    Golman, R. and G. Loewenstein (2015). "Curiosity, information gaps, and the utility of knowledge." Information Gaps, and the Utility of Knowledge (April 16, 2015): 96-135.
    Golman, R. and G. Loewenstein (2018). "Information gaps: A theory of preferences regarding the presence and absence of information." Decision 5(3): 143-164.
    Gottlieb, J., et al. (2013). "Information-seeking, curiosity, and attention: computational and neural mechanisms." Trends Cogn Sci 17(11): 585-593.
    Harlow, H. F. (1950). "Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys." J Comp Physiol Psychol 43(4): 289-294.
    Harlow, H. F., et al. (1950). "Learning motivated by a manipulation drive." J Exp Psychol 40(2): 228-234.
    Hayden, B. Y., et al. (2009). "Fictive Reward Signals in the Anterior Cingulate Cortex." Science 324(5929): 948-950.
    Hayden, B. Y., et al. (2011). "Neuronal basis of sequential foraging decisions in a patchy environment." Nat Neurosci 14(7): 933-939.
    Hayden, B. Y. and M. L. Platt (2007). "Temporal discounting predicts risk sensitivity in rhesus macaques." Curr Biol 17(1): 49-53.
    Heinrich, B. (1995). "Neophilia and exploration in juvenile common ravens, Corvus corax." Animal Behaviour 50(3): 695-704.
    Kidd, C. and B. Y. Hayden (2015). "The Psychology and Neuroscience of Curiosity." Neuron 88(3): 449-460.
    Kitamoto, T. (2001). "Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons." J Neurobiol 47(2): 81-92.
    Lall, S., et al. (2019). "Adult crowding induces sexual dimorphism in chronic stress-response in <em>Drosophila melanogaster</em>." bioRxiv: 702357.
    Lin, C. C., et al. (2016). "Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer." J Vis Exp(114).
    Liu, L., et al. (2007). "Exploratory activity in Drosophila requires the kurtz nonvisual arrestin." Genetics 175(3): 1197-1212.
    Ma, Z. and A. W. Krings (2009). "Insect sensory systems inspired computing and communications." Ad Hoc Networks 7(4): 742-755.
    Mao, Z. and R. L. Davis (2009). "Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity." Front Neural Circuits 3: 5.
    Mauss, A. S., et al. (2017). "Optogenetic Neuronal Silencing in Drosophila during Visual Processing." Scientific Reports 7(1): 13823.
    Melcher, C. and M. J. Pankratz (2005). "Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain." PLoS Biol 3(9): e305.
    Nall, A. H., et al. (2016). "Caffeine promotes wakefulness via dopamine signaling in Drosophila." Scientific Reports 6(1): 20938.
    Noonan, M. P., et al. (2010). "Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex." Proceedings of the National Academy of Sciences 107(47): 20547-20552.
    Oudeyer, P. Y., et al. (2007). "Intrinsic Motivation Systems for Autonomous Mental Development." IEEE Transactions on Evolutionary Computation 11(2): 265-286.
    Overman, K. E., et al. (2022). "Measuring the repertoire of age-related behavioral changes in Drosophila melanogaster." PLoS Comput Biol 18(2): e1009867.
    Park, J. Y., et al. (2016). "Drosophila SLC5A11 Mediates Hunger by Regulating K(+) Channel Activity." Curr Biol 26(15): 1965-1974.
    Potter, C. J., et al. (2000). "Drosophila in cancer research: an expanding role." Trends in Genetics 16(1): 33-39.
    Robie, A. A., et al. (2010). "Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception." J Exp Biol 213(Pt 14): 2494-2506.
    Shoji, H. and T. Miyakawa (2019). "Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program." Neuropsychopharmacology Reports 39(2): 100-118.
    Sloan Wilson, D., et al. (1994). "Shyness and boldness in humans and other animals." Trends Ecol Evol 9(11): 442-446.
    Vasconcelos, M., et al. (2015). "Irrational choice and the value of information." Scientific Reports 5(1): 13874.
    Walton, M. E., et al. (2010). "Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning." Neuron 65(6): 927-939.
    Wang, M. Z. and B. Y. Hayden (2019). "Monkeys are curious about counterfactual outcomes." Cognition 189: 1-10.
    Whitehead, S. C., et al. (2024). "Exploration-exploitation trade-off is regulated by metabolic state and taste value in Drosophila." bioRxiv.
    Wilson, A. D. M. and R. L. McLaughlin (2007). "Behavioural syndromes in brook charr, Salvelinus fontinalis: prey-search in the field corresponds with space use in novel laboratory situations." Animal Behaviour 74(4): 689-698.
    Wilson, A. D. M. and E. D. Stevens (2005). "Consistency in Context-specific Measures of Shyness and Boldness in Rainbow Trout, Oncorhynchus mykiss." Ethology 111(9): 849-862.
    Wilson, D. S., et al. (1993). "Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): An ecological study of a psychological trait." Journal of Comparative Psychology 107(3): 250-260.
    Yamamoto, S. and E. S. Seto (2014). "Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms." Exp Anim 63(2): 107-119.
    Yu, D., et al. (2004). "Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment." Neuron 42(3): 437-449.
    Yuki, S., et al. (2023). "Rats adaptively seek information to accommodate a lack of information." Scientific Reports 13(1): 14417.

    QR CODE