研究生: |
黃欣怡 Huang, Hsin-Yi |
---|---|
論文名稱: |
研究激酶GCK-2及PKG-1對線蟲神經纖毛生成及鞭毛內運輸機制之影響調控 Characterization of GCK-2 and PKG-1 affecting ciliogenesis and intraflagellar transport (IFT) in Caenorhabditis elegans |
指導教授: |
王歐力
Wagner, Oliver I. |
口試委員: |
焦傳金
Chiao, Chuan-Chin 莊碧簪 Juang, Bi-Tzen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 纖毛生成 、鞭毛內運輸 、線蟲 、激酶 、纖毛 |
外文關鍵詞: | ciliogenesis, intraflagellar transport, IFT, kinase, cilia, PKG-1, GCK-2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖毛是普遍存在於多種真核生物中的一種特異化細胞構造,其中非運動纖毛(又稱初級纖毛)可藉由膜上的受體蛋白檢測外界的環境與刺激,進而影響細胞的反應,在生理及發育中扮演重要的角色。纖毛蛋白缺失會導致嚴重的纖毛相關疾病(ciliopathy),例如人類多囊腎臟病(polycystic kidney disease, PKD)、腎消耗病(nephronophthisis, NPHP)或巴德-畢德氏症候群(Bardet-Biedl syndrome)。複雜的纖毛生成(ciliogenesis)主要由物種間高度保留的鞭毛內運輸(intraflagellar transport, IFT)和細胞內多種調控機制負責。儘管在過去幾年的研究中,對纖毛生成及鞭毛內運輸的基礎認識已有大幅度的躍進,但其中複雜的調控機制仍待進一步仔細探討。先前在遺傳篩選及趨化性的實驗中,我們已經成功篩選出影響線蟲頭部化感器功能的兩個激酶GCK-2及PKG-1。在本研究中,我們進一步去探究這兩個激酶在纖毛生成及鞭毛內運輸中所扮演的調控角色。在量測纖毛長度的實驗中,我們發現gck-2突變株的纖毛較長;而鞭毛內運輸的分析結果則顯示gck-2突變株及pkg-1突變株對纖毛內運輸的速度及鞭毛內運輸蛋白間的組裝皆會造成影響。此外,我們觀察到在pkg-1突變株中,OSM-3致動蛋白會不正常地堆積在纖毛遠端。總而言之,我們推論出GCK-2和PKG-1在纖毛生成及鞭毛內運輸的調控機制中可能扮演不同的角色:GCK-2負責調控纖毛長度,而PKG-1則負責穩定在逆向運輸中OSM-3致動蛋白和其他纖毛蛋白的組合。
Cilia are specialized subcellular organelles which exist in various cell types in most eukaryotic organisms. Non-motile cilia, or primary cilia, are mainly responsible for sensory function and are recognized to have essential roles in physiology and development. Defects in ciliary proteins lead to severe diseases termed ciliopathies, such as polycystic kidney disease (PKD), the most common inherited kidney disease and one of the most life-threatening diseases in the world, or nephronophthisis (NPHP), the most common genetic cause of chronic kidney disease. The conserved bidirectional intraflagellar transport (IFT) is fundamentally involved in ciliogenesis and is coupled with multiple intracellular signaling pathways. Although significant advances have been made in understanding ciliogenesis and IFT in the past few years, details on how the process is regulated remains poorly understood. By genetic screening and chemotaxis assay, we have identified two kinases GCK-2 and PKG-1 which affect the chemo-sensibility of amphid neurons in C. elegans. In this study, we further characterize their regulation roles in ciliogenesis and IFT process by cilia length measurement and IFT motility analysis. Here, we observed that worms lacking GCK-2 tend to grow longer cilia. Later in the IFT analysis, the transport speeds of different IFT-components are affected in the absence of either GCK-2 or PKG-1. And the stable IFT machinery assembly may also be modulated by GCK-2 and PKG-1. In addition, we observed abnormal OSM-3 kinesin accumulation at the distal segment of cilia in pkg-1 mutant strains. Overall, here we reported that GCK-2 and PKG-1 may regulate ciliogenesis and IFT particle transport in different ways: GCK-2 controls cilia lengthening, while PKG-1 affects the association of OSM-3 kinesin to the retrograde IFT machinery.
Altun, Z.F., Hall, D.H. (2010). Nervous system, neuronal support cells. In WormAtlas.
Ansley, S.J., Badano, J.L., Blacque, O.E., Hill, J., Hoskins, B.E., Leitch, C.C., Kim, J.C., Ross, A.J., Eichers, E.R., Teslovich, T.M., et al. (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425, 628-633.
Asleson, C.M., and Lefebvre, P.A. (1998). Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148, 693-702.
Avasthi, P., and Marshall, W.F. (2012). Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, S30-42.
Badano, J.L., Mitsuma, N., Beales, P.L., and Katsanis, N. (2006). The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7, 125-148.
Bae, Y.K., Lyman-Gingerich, J., Barr, M.M., and Knobel, K.M. (2008). Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn 237, 2021-2029.
Bargmann, C.I., Hartwieg, E., and Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527.
Bengs, F., Scholz, A., Kuhn, D., and Wiese, M. (2005). LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol 55, 1606-1615.
Berman, S.A., Wilson, N.F., Haas, N.A., and Lefebvre, P.A. (2003). A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13, 1145-1149.
Besschetnova, T.Y., Kolpakova-Hart, E., Guan, Y., Zhou, J., Olsen, B.R., and Shah, J.V. (2010). Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20, 182-187.
Bisgrove, B.W., and Yost, H.J. (2006). The roles of cilia in developmental disorders and disease. Development 133, 4131-4143.
Blacque, O.E., Li, C., Inglis, P.N., Esmail, M.A., Ou, G., Mah, A.K., Baillie, D.L., Scholey, J.M., and Leroux, M.R. (2006). The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport. Mol Biol Cell 17, 5053-5062.
Blacque, O.E., Perens, E.A., Boroevich, K.A., Inglis, P.N., Li, C., Warner, A., Khattra, J., Holt, R.A., Ou, G., Mah, A.K., et al. (2005). Functional genomics of the cilium, a sensory organelle. Curr Biol 15, 935-941.
Blacque, O.E., Reardon, M.J., Li, C., McCarthy, J., Mahjoub, M.R., Ansley, S.J., Badano, J.L., Mah, A.K., Beales, P.L., Davidson, W.S., et al. (2004). Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 18, 1630-1642.
Blacque, O.E., and Sanders, A.A. (2014). Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 10, 126-137.
Bradley, B.A., and Quarmby, L.M. (2005). A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J Cell Sci 118, 3317-3326.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Broekhuis, J.R., Verhey, K.J., and Jansen, G. (2014). Regulation of Cilium Length and Intraflagellar Transport by the RCK-Kinases ICK and MOK in Renal Epithelial Cells. PLoS One 9, e108470.
Bryk, B., Hahn, K., Cohen, S.M., and Teleman, A.A. (2010). MAP4K3 regulates body size and metabolism in Drosophila. Dev Biol 344, 150-157.
Burghoorn, J., Dekkers, M.P., Rademakers, S., de Jong, T., Willemsen, R., and Jansen, G. (2007). Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc Natl Acad Sci U S A 104, 7157-7162.
Burghoorn, J., Piasecki, B.P., Crona, F., Phirke, P., Jeppsson, K.E., and Swoboda, P. (2012). The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Dev Biol 368, 415-426.
Caplan, S.L., Milton, S.L., and Dawson-Scully, K. (2013). A cGMP-dependent protein kinase (PKG) controls synaptic transmission tolerance to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurophysiol 109, 649-658.
Cevik, S., Sanders, A.A., Van Wijk, E., Boldt, K., Clarke, L., van Reeuwijk, J., Hori, Y., Horn, N., Hetterschijt, L., Wdowicz, A., et al. (2013). Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet 9, e1003977.
Chaya, T., Omori, Y., Kuwahara, R., and Furukawa, T. (2014). ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J 33, 1227-1242.
Chen, N., Mah, A., Blacque, O.E., Chu, J., Phgora, K., Bakhoum, M.W., Newbury, C.R., Khattra, J., Chan, S., Go, A., et al. (2006). Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol 7, R126.
Choksi, S.P., Lauter, G., Swoboda, P., and Roy, S. (2014). Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141, 1427-1441.
Christensen, S.T., Pedersen, S.F., Satir, P., Veland, I.R., and Schneider, L. (2008). The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85, 261-301.
Cole, D.G. (2005). Intraflagellar transport: keeping the motors coordinated. Curr Biol 15, R798-801.
Cole, D.G., Chinn, S.W., Wedaman, K.P., Hall, K., Vuong, T., and Scholey, J.M. (1993). Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268-270.
Cole, D.G., Diener, D.R., Himelblau, A.L., Beech, P.L., Fuster, J.C., and Rosenbaum, J.L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141, 993-1008.
Daniels, S.A., Ailion, M., Thomas, J.H., and Sengupta, P. (2000). egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics 156, 123-141.
Dubruille, R., Laurencon, A., Vandaele, C., Shishido, E., Coulon-Bublex, M., Swoboda, P., Couble, P., Kernan, M., and Durand, B. (2002). Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5487-5498.
Efimenko, E., Bubb, K., Mak, H.Y., Holzman, T., Leroux, M.R., Ruvkun, G., Thomas, J.H., and Swoboda, P. (2005). Analysis of xbx genes in C. elegans. Development 132, 1923-1934.
Emery, P., Durand, B., Mach, B., and Reith, W. (1996). RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res 24, 803-807.
Engel, B.D., Ludington, W.B., and Marshall, W.F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187, 81-89.
Findlay, G.M., Yan, L., Procter, J., Mieulet, V., and Lamb, R.F. (2007). A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403, 13-20.
Fliegauf, M., Benzing, T., and Omran, H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8, 880-893.
Fujiwara, M., Ishihara, T., and Katsura, I. (1999). A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. Development 126, 4839-4848.
Fujiwara, M., Sengupta, P., and McIntire, S.L. (2002). Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36, 1091-1102.
Gajiwala, K.S., Chen, H., Cornille, F., Roques, B.P., Reith, W., Mach, B., and Burley, S.K. (2000). Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916-921.
Goetz, S.C., and Anderson, K.V. (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11, 331-344.
Goetz, S.C., Ocbina, P.J., and Anderson, K.V. (2009). The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol 94, 199-222.
Hao, L., Efimenko, E., Swoboda, P., and Scholey, J.M. (2011). The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes? PLoS One 6, e20995.
Hao, L., and Scholey, J.M. (2009). Intraflagellar transport at a glance. J Cell Sci 122, 889-892.
Hilton, L.K., Gunawardane, K., Kim, J.W., Schwarz, M.C., and Quarmby, L.M. (2013). The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr Biol 23, 2208-2214.
Hirose, T., Nakano, Y., Nagamatsu, Y., Misumi, T., Ohta, H., and Ohshima, Y. (2003). Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans. Development 130, 1089-1099.
Huang, L., Szymanska, K., Jensen, V.L., Janecke, A.R., Innes, A.M., Davis, E.E., Frosk, P., Li, C., Willer, J.R., Chodirker, B.N., et al. (2011). TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89, 713-730.
Inglis, P.N., Ou, G., Leroux, M.R., and Scholey, J.M. (2007). The sensory cilia of Caenorhabditis elegans. WormBook, 1-22.
Ishikawa, H., and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12, 222-234.
Juang, B.T., Gu, C., Starnes, L., Palladino, F., Goga, A., Kennedy, S., and L'Etoile, N.D. (2013). Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 154, 1010-1022.
Kaun, K.R., Chakaborty-Chatterjee, M., and Sokolowski, M.B. (2008). Natural variation in plasticity of glucose homeostasis and food intake. J Exp Biol 211, 3160-3166.
Ke, Y.N., and Yang, W.X. (2014). Primary cilium: an elaborate structure that blocks cell division? Gene 547, 175-185.
Keller, L.C., Geimer, S., Romijn, E., Yates, J., 3rd, Zamora, I., and Marshall, W.F. (2009). Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol Biol Cell 20, 1150-1166.
Khan, M.H., Hart, M.J., and Rea, S.L. (2012). The role of MAP4K3 in lifespan regulation of Caenorhabditis elegans. Biochem Biophys Res Commun 425, 413-418.
Kim, J., Lee, J.E., Heynen-Genel, S., Suyama, E., Ono, K., Lee, K., Ideker, T., Aza-Blanc, P., and Gleeson, J.G. (2010). Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048-1051.
Kim, S., and Tsiokas, L. (2011). Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10, 2683-2690.
Kozminski, K.G., Johnson, K.A., Forscher, P., and Rosenbaum, J.L. (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90, 5519-5523.
L'Etoile, N.D., Coburn, C.M., Eastham, J., Kistler, A., Gallegos, G., and Bargmann, C.I. (2002). The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36, 1079-1089.
Lee, B.H., Liu, J., Wong, D., Srinivasan, S., and Ashrafi, K. (2011). Hyperactive neuroendocrine secretion causes size, feeding, and metabolic defects of C. elegans Bardet-Biedl syndrome mutants. PLoS Biol 9, e1001219.
Lee, J.I., O'Halloran, D.M., Eastham-Anderson, J., Juang, B.T., Kaye, J.A., Scott Hamilton, O., Lesch, B., Goga, A., and L'Etoile, N.D. (2010). Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. Proc Natl Acad Sci U S A 107, 6016-6021.
Liu, L., Zhang, M., Xia, Z., Xu, P., Chen, L., and Xu, T. (2011). Caenorhabditis elegans ciliary protein NPHP-8, the homologue of human RPGRIP1L, is required for ciliogenesis and chemosensation. Biochem Biophys Res Commun 410, 626-631.
Margie, O., Palmer, C., and Chin-Sang, I. (2013). C. elegans chemotaxis assay. J Vis Exp, e50069.
Marshall, W.F., Qin, H., Rodrigo Brenni, M., and Rosenbaum, J.L. (2005). Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16, 270-278.
Marshall, W.F., and Rosenbaum, J.L. (2001). Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155, 405-414.
Mery, F., Belay, A.T., So, A.K., Sokolowski, M.B., and Kawecki, T.J. (2007). Natural polymorphism affecting learning and memory in Drosophila. Proc Natl Acad Sci U S A 104, 13051-13055.
Moon, H., Song, J., Shin, J.O., Lee, H., Kim, H.K., Eggenschwiller, J.T., Bok, J., and Ko, H.W. (2014). Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling. Proc Natl Acad Sci U S A 111, 8541-8546.
Nakano, Y., Nagamatsu, Y., and Ohshima, Y. (2004). cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4. Genes Cells 9, 773-779.
O'Halloran, D.M., Hamilton, O.S., Lee, J.I., Gallegos, M., and L'Etoile, N.D. (2012). Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS One 7, e31614.
Omori, Y., Chaya, T., Katoh, K., Kajimura, N., Sato, S., Muraoka, K., Ueno, S., Koyasu, T., Kondo, M., and Furukawa, T. (2010). Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci U S A 107, 22671-22676.
Ou, G., Blacque, O.E., Snow, J.J., Leroux, M.R., and Scholey, J.M. (2005). Functional coordination of intraflagellar transport motors. Nature 436, 583-587.
Ou, G., Koga, M., Blacque, O.E., Murayama, T., Ohshima, Y., Schafer, J.C., Li, C., Yoder, B.K., Leroux, M.R., and Scholey, J.M. (2007). Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell 18, 1554-1569.
Ozgul, R.K., Siemiatkowska, A.M., Yucel, D., Myers, C.A., Collin, R.W., Zonneveld, M.N., Beryozkin, A., Banin, E., Hoyng, C.B., van den Born, L.I., et al. (2011). Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am J Hum Genet 89, 253-264.
Pan, J., and Snell, W.J. (2003). Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase. J Cell Sci 116, 2179-2186.
Pan, J., Wang, Q., and Snell, W.J. (2005). Cilium-generated signaling and cilia-related disorders. Lab Invest 85, 452-463.
Pan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O.E., Endres, N.F., Tao, L., Mogilner, A., Leroux, M.R., Vale, R.D., and Scholey, J.M. (2006). Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol 174, 1035-1045.
Pazour, G.J., Agrin, N., Leszyk, J., and Witman, G.B. (2005). Proteomic analysis of a eukaryotic cilium. J Cell Biol 170, 103-113.
Pedersen, L.B., and Christensen, S.T. (2012). Regulating intraflagellar transport. Nat Cell Biol 14, 904-906.
Pedersen, L.B., Veland, I.R., Schroder, J.M., and Christensen, S.T. (2008). Assembly of primary cilia. Dev Dyn 237, 1993-2006.
Perkins, L.A., Hedgecock, E.M., Thomson, J.N., and Culotti, J.G. (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117, 456-487.
Phirke, P., Efimenko, E., Mohan, S., Burghoorn, J., Crona, F., Bakhoum, M.W., Trieb, M., Schuske, K., Jorgensen, E.M., Piasecki, B.P., et al. (2011). Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev Biol 357, 235-247.
Piasecki, B.P., Burghoorn, J., and Swoboda, P. (2010). Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proc Natl Acad Sci U S A 107, 12969-12974.
Piperno, G., Siuda, E., Henderson, S., Segil, M., Vaananen, H., and Sassaroli, M. (1998). Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J Cell Biol 143, 1591-1601.
Porter, M.E., Bower, R., Knott, J.A., Byrd, P., and Dentler, W. (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10, 693-712.
Raizen, D.M., Cullison, K.M., Pack, A.I., and Sundaram, M.V. (2006). A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans. Genetics 173, 177-187.
Reiter, J.F., Blacque, O.E., and Leroux, M.R. (2012). The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13, 608-618.
Resnik-Docampo, M., and de Celis, J.F. (2011). MAP4K3 is a component of the TORC1 signalling complex that modulates cell growth and viability in Drosophila melanogaster. PLoS One 6, e14528.
Rosenbaum, J.L., and Witman, G.B. (2002). Intraflagellar transport. Nat Rev Mol Cell Biol 3, 813-825.
Schafer, J.C., Haycraft, C.J., Thomas, J.H., Yoder, B.K., and Swoboda, P. (2003). XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol Biol Cell 14, 2057-2070.
Scholey, J.M., Ou, G., Snow, J., and Gunnarson, A. (2004). Intraflagellar transport motors in Caenorhabditis elegans neurons. Biochem Soc Trans 32, 682-684.
Sellak, H., Choi, C.S., Dey, N.B., and Lincoln, T.M. (2013). Transcriptional and post-transcriptional regulation of cGMP-dependent protein kinase (PKG-I): pathophysiological significance. Cardiovasc Res 97, 200-207.
Sengupta, P., Chou, J.H., and Bargmann, C.I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899-909.
Signor, D., Wedaman, K.P., Rose, L.S., and Scholey, J.M. (1999). Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol Biol Cell 10, 345-360.
Snow, J.J., Ou, G., Gunnarson, A.L., Walker, M.R., Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2004). Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6, 1109-1113.
Swoboda, P., Adler, H.T., and Thomas, J.H. (2000). The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5, 411-421.
Tammachote, R., Hommerding, C.J., Sinders, R.M., Miller, C.A., Czarnecki, P.G., Leightner, A.C., Salisbury, J.L., Ward, C.J., Torres, V.E., Gattone, V.H., 2nd, et al. (2009). Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 18, 3311-3323.
Tobin, J.L., and Beales, P.L. (2009). The nonmotile ciliopathies. Genet Med 11, 386-402.
Tucker, B.A., Scheetz, T.E., Mullins, R.F., DeLuca, A.P., Hoffmann, J.M., Johnston, R.M., Jacobson, S.G., Sheffield, V.C., and Stone, E.M. (2011). Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108, E569-576.
Wang, S., Shiva, S., Poczatek, M.H., Darley-Usmar, V., and Murphy-Ullrich, J.E. (2002). Nitric oxide and cGMP-dependent protein kinase regulation of glucose-mediated thrombospondin 1-dependent transforming growth factor-beta activation in mesangial cells. J Biol Chem 277, 9880-9888.
Waters, A.M., and Beales, P.L. (2011). Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26, 1039-1056.
Wei, Q., Zhang, Y., Li, Y., Zhang, Q., Ling, K., and Hu, J. (2012). The BBSome controls IFT assembly and turnaround in cilia. Nat Cell Biol 14, 950-957.
Wes, P.D., and Bargmann, C.I. (2001). C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698-701.
Williams, C.L., Li, C., Kida, K., Inglis, P.N., Mohan, S., Semenec, L., Bialas, N.J., Stupay, R.M., Chen, N., Blacque, O.E., et al. (2011). MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192, 1023-1041.
Yang, Y., Roine, N., and Makela, T.P. (2013). CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep 14, 741-747.
You, Y.J., Kim, J., Raizen, D.M., and Avery, L. (2008). Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 7, 249-257.
Zaghloul, N.A., and Brugmann, S.A. (2011). The emerging face of primary cilia. Genesis 49, 231-246.
Zhou, J. (2009). Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71, 83-113.