研究生: |
林敏雄 Min-Hsiung Lin |
---|---|
論文名稱: |
若斯勒超混沌系統之耦合同步現象 Synchronization of Coupled Rossler Hyperchaotic Systems |
指導教授: |
林文偉
Wen-Wei Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 黎阿普諾夫 、若斯勒 、超混沌 、耦合 |
外文關鍵詞: | Lyapunov, Rossler, hyperchaotic, couple |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文致力於了解兩個相同的若斯勒超混沌系統(Rossler hyperchaotic systems),經由某些參數耦合所組成的混沌系統裡的同步現象。在證明兩系統的同步現象,需引入一適當的黎阿普諾夫函數(Lyapunov function),並配合相關定理來映證,當耦合係數(coupling coefficients)充分大時,我們更可以證明出兩混沌系統之同步性。此外,針對這份研究的目的,我們除了整理相關文獻裡出現的黎阿普諾夫函數(Lyapunov function)定義、定理外,也將此規則應用於我們的證明中。甚且,在論文的最後將藉由一連串的數值結果來展示(1)兩若斯勒超混沌系統的耦合同步現象(2)若斯勒系統的黎阿普諾夫指數(Lyapunov exponents)(3)若斯勒超混沌系統的吸引子投影圖。
In this paper, we propose the sychronizaion of the two coupled Rossler systems. First, we construct a specific Lyapunov function to check the sychronizaion of the two coupled systems. Through the construction of Lyapunov function we can see that the two coupled systems will be synchronized under some certain circumstances. Second, we will display the numerical results to show the effectiveness of synchronization, the Lyapunov exponents of the Rossler systems, and projections of Rossler's hyperchaotic attractor with different parameters.
[1] W. W. Lin and C. C. Peng, Asymptotic synchronization in lattices of coupled
three-dimension nonlinear chaotic equations, Journal of Mathmatical Analysis and
Applications., 250 (2000), 222-224.
[2] W. W. Lin and C. C. Peng, Chaotic synchronization in Lattice of partial-state
coupled Lorenz equations, Physica D., 166 (2000), 29-42.
[3] C. H. Chiu, W. W. Lin and C. S. Wang, Synchronization in lattices of coupled
oscillators with various boundary conditions, Nonlinear Analysis., 46 (2001), 213-
229.
[4] V. S. Afraimovich, W. W. Lin and N. F. Rulkov, Fractal dimension for Poincar¶□□recurrences as an indicator of synchronized chaotic regimes, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 2323-2337.
[5] A. S. Pikovsky, M. G. Rosenblum , G. V. Osipov and J. Kurths, Phase synchronization of chaotic oscillators by extenal drivig, Physica D, 104 (1997), 219-238.
[6] J. K. Hale, Di®usive coupling, dissipation and synchronization, J. Dynam. Di®erential Equations, 9 (1997), 1-52.
[7] V. S. Afraimovich, N. N. Verichev and M. I. Rabinovich, Stochastic synchronization of oscillators in dissipative systems, Izv. Vyssh. Uchebn. Zaved. Radio‾z, 29 (1986), 1050-1060; Radiophys. and Quantum Electronics, 29 (1986), 747-751.
[8] H. D. I. Abarbanel, N. F. Rulkov and M. M. Sushchik, Generalized synchronizaion
of chaos: The auxiliary system approach, Phys. Rev. E, 53 (1996), 4528-4535.
[9] S. Chen, J. Hu, C. Wang and J. LÄ□, Adaptive synchronization of uncertaion RÄ□ssler hyperchaotic system based on parameter identi‾cation, Phys. Lett. A, 321 (2004), 50-55.
[10] V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum
Electron., 29, 747 (1986).
[11] L. M. Pecora, T. L. Carrol, Phys. Rev. Lett., 64, 821 (1990).
[12] G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applocations. World Scienti‾c, Singapore, (1986).
[13] O. E. RÄ□ssler An equation for hyperchaos, Phys. Lett., 71A (1979), 155-157.
[14] Alan WOLF, Jack B. SWIFT, Harry L. SWINNEY and John A. VASTANO Determining Lyapunov exponents from a time series, Physica, 16D (1985), 285-317.
[15] O. E. RÄ□ssler An equation for continuous hyperchaos, Phys. Lett., 57A (1976),
397-398.
[16] Thomas S. Parker, Leon O. Chua Practical Numerical Algorithms for Chaotic
Systems, Springer-Verlag, 1991.
[17] Kathleen T. Alligood, Tim D. Sauer, James A. Yorke CHAOS, Springer-Verlag,
1996.
[18] L. Perko Di®erential Equations and Dynamical Systems, Third Edition Springer-
Verlag, 2001.