簡易檢索 / 詳目顯示

研究生: 邱士珊
Shih Shan Chiou
論文名稱: 多項式的穩定與振動域
Stability and Oscillation Regions of Polynomials
指導教授: 鄭穗生
Sui Sun Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 49
中文關鍵詞: 穩定域
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們關心的是關於多項式的振動域跟穩定域。在第二節中,我們找到了四次多項式的穩定域,也就是四次多項式的根的絕對值小於1的區域。在第三節中,我們找到了五次多項式的穩定域,也就是五次多項式沒有正根的區域。而在第三節中,我們使用了envelopes的方法。


    ABSTRACT
    In this thesis, we are concerned with the stability
    and oscillation regions of polynomials. In Section 2,
    given an arbitrary real quartic polynomial, we find the
    exact region containing the coefficients of the polynomial
    such that all roots have absolute value less than
    1. In Section 3, given an arbitrary real quintic polynomial,
    we are concerned with the necessary and suf-
    ficient conditions imposed on the parameters of the
    polynomial so that all its roots are non-positive. By
    means of the method of envelopes, we are able to derive
    the exact region containing these parameters.

    Contents: 1.Introduction ………………………………………… 1 2.Stability Region ……………………………………… 3 2.1 Case 1 …………………………………………………8 2.2 Case 2 …………………………………………………9 2.3 Case 3 …………………………………………………9 2.4 Case 4 …………………………………………………11 2.5 Case 5 …………………………………………………15 3.Oscillation Region …………………………………… 16 3.1 Tangents of Convex Functions …………………… 16 3.2 Quadratic Polynomials …………………………… 25 3.3 Cubic Polynomials ……………………………… 26 3.4 Quartic Polynomials ……………………………… 29 3.5 Quintic Polynomials ……………………………… 39 4. References ……………………………………… 49

    References:
    [1] G. Gandolfo, Economic Dynamics, Springer, 1996.
    [2] S. A. Kuruklis, The asymptotic stability of xn+1-axn+bxn-k=0, J. Math. Anal. Appl., 188(1994), 719-731.
    [3] S. A. Levin and R. M. May, A note on difference-delay equations, Theoret. Population Biol., 9(1976), 178-187.
    [4] V. G. Papanicolaou, On the asymptotic stability of a class of linear difference equations, Math. Magazine, 69(1996), 34-43.
    [5] R. Ogita, H. Matsunaga and T. Hara, Asymptotic stability condition for a class of linear delay difference equations of higher order, J. Math. Anal. Appl., 248(2000), 83--96.
    [6] E. J. Barbeau, Polynomials, Springer-Verlag, 1989.
    [7] R. J. Duffin, Algorithms for classical stability problems, SIAM Review, 11(2)(1969), 196—213
    [8] Y. Z. Lin and S. S. Cheng, Complete characterizations of a class of oscillatory difference equations, J. Difference Eq. Appl., 2(1996), pp. 301-313.
    [9] S. S. Cheng and Y. Z. Lin, Complete characterizations of an oscillatory neutral difference equation, J. Math. Anal. Appl., 221(1998), 73-91.
    [10] L. M. Chen, Y. Z. Lin and S. S. Cheng, Exact regions of oscillation for a difference equation with six parameters, J. Math. Anal. Appl., 222(1998), 92-109.
    [11] S. S. Cheng, Y. Z. Lin and T. Rassias, Exact regions of oscillation for a neutral difference equation with five parameters, J. Difference Eq. Appl., 6(2000), 513-534.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE