簡易檢索 / 詳目顯示

研究生: 陳雅涵
Chen, Ya-Han
論文名稱: 二氧化鉿薄膜內嵌鎳奈米點電阻式記憶體與鋯摻雜之鐵電鰭式結構記憶體的研究
Study of HfO2-based Thin Film with Embedded Ni Nanocrystals Resistive Random Access Memory and HfZrO2 Ferroelectric FinFET Memory
指導教授: 吳永俊
Wu, Yung-Chun
林育賢
Lin, Yu-Hsien
口試委員: 朱鵬維
Chu, Peng-Wei
侯福居
Hou, Fu-Ju
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 70
中文關鍵詞: 電阻式記憶體奈米點類神經應用鰭式結構鐵電記憶體
外文關鍵詞: RRAM, Nanocrystal, Neuron application, Fin-structure, Ferroelectric memory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊時代的來臨,我們需要透過記憶體來儲存大量的資料,因此非揮發性記憶體在我們日常生活中扮演著不可或缺的角色,舉凡手機、相機、電腦以及固態硬碟裡,都需要具備非揮發性記憶體來幫助我們保存資料,而目前市場上所廣泛流通的非揮發性記憶體主要以電荷儲存式的快閃記憶體為主,但隨著產業持續微縮的發展狀況下,這種快閃式記憶體面臨了物理極限的問題,因此研究新式的非揮發性記憶體變得相當重要,而新式的非揮發性記憶體包含磁阻式記憶體(Magnetoresistive Random Access Memory, MRAM)、相變化(Phase Change Random Access Memory, PCRAM)以及此次研究重點電阻式記憶體(Resistive Random Access Memory, RRAM)和鐵電記憶體(Ferroelectric Random Access Memory, FeRAM)這四類,來達到高效能、低功率消耗、低操作電壓以及面積小的優勢。
    電阻式記憶體除了可以作為傳統的記憶體來使用外,亦可以結合人工智慧運算來使的該結構應用在硬體類神經網絡上,透過模擬人類大腦中的網絡結構,來建立下一世代電腦處理系統的模式,但,單純的電晶體結構無法達到仿生系統(neuromorphic system)的效果,因此有研究團隊嘗試藉由嵌入電阻式記憶體來做為突觸元件,來克服龐大運算以及高密度神經網絡的問題,使元件能具有像神經元一樣可調整突觸權重值(亦稱為突觸可塑性, synaptic plasticity)的能力,顯現海伯學習法(Hebb's learning)中重要的短期記憶(STM)、長期記憶(LTM)仿生特性。
    在本篇論文中,我們透過將鎳金屬奈米點鑲嵌於二氧化鉿介電層裡來達到高效能的RRAM結構,透過這個方法來提升鎳金屬奈米點附近的有效電場,來使的絕緣層中的阻絲(Conductance Filaments, CF)更容易地被形成以及打斷,同時我們也透過Centaurus 3D TCAD模擬軟體觀察到電場增強的現象。本篇論文成功的使鎳金屬奈米點具有極低的操作電壓(±2V)、高切換速度(60ns)、高達350倍的高低阻抗比(High Resistance State /Low Resistance State>350, HRS/LRS>350)、高可靠度、良好的均勻性以及6個Bits (64 states)的記憶能力,同時,我們也有對該元件的絕緣層電子導通機制進行探討,並以未摻雜的純二氧化鉿絕緣層結構作為對照組,來比較改良後的元件特性優劣。同時我們也對具有量產潛力的FeFET結構進行初步的探討,並結合現行的鰭式電晶體結構(FinFET),在該結構中,其記憶體儲存空間(Memory Window, MW)超過1V,而寫入抹除的速度則高達100ns。
    此研究中的鑲嵌鎳金屬奈米點結構具有低電壓、高速運算、高可靠度以及高記憶能力的效果,相當適合應用在類神經網絡系統上,但在製程所需的退火溫度上,仍有可改善的空間,可以透過嘗試不一樣的金屬奈米點材料,來進一步的優化該結構,使該結構在未來的類神經應用上,扮演重要的角色,而我們所研究的FeFET具備的高速運算能力,也是一個值得深入探討的研究方向。


    With the advantage of the information age, we need to store a large amount of data through memory devices. Therefore, non-volatile memory (NVM) plays an indispensable role in our daily lives. For example, mobile phones, cameras, computers, and solid-state devices. All need to have non-volatile memory to help us with saving data. The main type of the NVM currently widely be circulated in the market and surround our life is the charge storage flash memory. But, as the industry rapidly develops, this kind of flash memory faces a big problem of physical limitations. Thus, it is very important to study a new type of NVM. The new type of NVM includes magneto resistive random access memory (MRAM), phase-change random access memory (PCRAM), resistive random access memory (RRAM), and ferroelectric random access memory (FeRAM), which are the main focus of this research, is to achieve the advantages of high efficiency, low power consumption, low operating voltage and reduce the area.
    RRAM can not only be used as a traditional memory but also can be combined with artificial intelligence to the application on the hardware-based neural network system. By imitating the network structure of the human brain, the computing model of the next-generation computers can be built. However, only the simple CMOS-based transistor structures cannot achieve the effect of the neuromorphic system. Therefore, some researchers tried to overcome the problems of large calculations and high-density neural networks by embedding RRAM as a synaptic component. Enables the component to have the ability to adjust the synaptic weight value to shows the important bionic characteristics of short-term memory (STM) and long-term memory (LTM) in Hebb's learning.
    In this work, first, we present a novel nickel (Ni) nanocrystals (NCs) device by inserting NCs in the HfO2 layer to achieve a high efficiency resistive random access memory (RRAM). This result arises from the fact that the enhanced electric field intensity near Ni NCs, evidenced by the TCAD simulation, can effectively facilitate the formation and rupture of the conductive filaments (CF). The device operates at a low bias (±2V), fast switching (60ns), the high resistance state (HRS)/low resistance state (LRS) ratio can up to 350, high reliability, good uniformity, and multi-bits function (6-bits). The current fitting method of the Ni NCs device was also used to observe the carrier transport mechanisms. At the same time, the control sample of the pure HfO2 device (HfO2 device) is also made to compare the pros and cons. At the same time, we have also a preliminary discussion of the ferroelectric FinFET memory structure, which bears high production potential. Its memory window (MW) has >1V, and the speed of the program and erase is as high as 100ns.
    In this research, the Ni NCs device has the advantage of low operation voltage, high switching speed, high reliability, and multi-bits function. Thus, it is very suitable for the application of the neuron network systems. However, the thermal budget during the process still can be further improved by using different materials to form the metal NCs for future application on neuron systems. The high-speed computing capability of ferroelectric FinFET memory we studied is also a research direction worthy of in-depth discussion.

    中文摘要 i Abstract iii Acknowledge vi Figure Captions ix Chapter 1 1 Introduction 1 1.1 Introduction of Memory 1 1.1.1 RRAM 3 1.1.2 FeFET 5 1.1.3 MRAM 8 1.1.4 PRAM 9 1.2 Different Structure of RRAM 10 1.2.1 Nanocrystal Structure 10 1.2.2 Back-to-Back Structure 12 1.3 Introduction of Neuron System [1-21] 13 1.3.1 Short-Term Plasticity 14 1.3.2 Long-Term Plasticity 15 1.4 Multi-Memristive Synapses in Neural Applications [1-22] 16 1.5 Motivation 18 Chapter2 21 Switching Operation Mechanisms and Reliability of RRAM 21 2.1 Switching Mechanisms of RRAM 21 2.1.1 Oxygen Vacancies Filament-Based RRAM [2-1] 21 2.1.2 Metal Ion-Based RRAM [2-2] 23 2.2 Insulator Conductive Mechanism 24 2.2.1 Ohmic Conduction 25 2.2.2 Fowler–Nordheim (F–N) Tunneling 26 2.2.3 Pool-Frenkel (P–F) Emission 27 2.2.4 Schottky Emission 27 2.2.5 Space Charge Limit Current (SCLC) 28 2.2.6 Hopping Conduction 29 2.3 Reliability 30 viii 2.3.1 Retention .......................................................................................................................................................................................................... 30 2.3.2 Endurance ...................................................................................................................................................................................................... 30 Chapter3 .............................................................................................................................................................................................................................................. 31 RRAM Device Fabrication .................................................................................................................................................................................... 31 3.1 Device Fabrication .................................................................................................................................................................................. 31 3.2 Transmission Electron Microscope (TEM) and TEM Energy Dispersive Spectroscopy (EDS) Images ................................................................................................................................................................ 32 3.3 Scanning Transmission Electron Microscope (STEM) and Conductive Atomic Force Microscope (CAFM) Images ................................................................................................................ 33 3.4 X-ray Photoelectron Spectroscopy (XPS) Images .................................................................................. 34 Chapter 4 ............................................................................................................................................................................................................................................ 36 Experiment result and discussion.................................................................................................................................................................. 36 4.1 The Simulation Result of RRAM Analysis ........................................................................................................ 36 4.2 The Electrical Characteristics of RRAM .............................................................................................................. 37 4.2.1 I-V Curves of RRAM .................................................................................................................................................................... 37 4.2.2 The Switching Mechanism of RRAM ................................................................................................................ 40 4.2.3 The Switching Speed of RRAM .................................................................................................................................. 42 4.2.4 Retention Characteristic ............................................................................................................................................................ 43 4.2.5 Endurance Characteristic ........................................................................................................................................................ 44 4.2.6 The Cumulative Diagram of RRAM ...................................................................................................................... 45 4.2.7 The Neuron Application of RRAM .......................................................................................................................... 47 4.2.8 The Read-Disturbance for Neuron Application .................................................................................... 49 Chapter 5 ............................................................................................................................................................................................................................................ 51 Ferroelectric FinFET Memory .......................................................................................................................................................................... 51 5.1 Ferroelectric FinFET memory Fabrication ........................................................................................................ 51 5.2 Experiment Result and Discussion ................................................................................................................................ 53 5.2.1 The Characteristic of Ferroelectric FinFET Memory Electrical Analysis .... 53 5.2.2 Program Speed of Ferroelectric FinFET Memory ............................................................................ 56 Chapter 6 ............................................................................................................................................................................................................................................ 60 Conclusion ...................................................................................................................................................................................................................................... 60 Reference .......................................................................................................................................................................................................................................... 61

    Chapter 1
    [1-1] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze. "Resistance random access memory," Materials Today 19 (2016), 254.
    [1-2] Xiaoxin, X., Luo, Q., Tiancheng, G., Hangbing, L., Shibing, L., Qi, L., Chung, S. S., Jing, L. and Ming, L. (2016), "Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling", in 2016 IEEE Symposium on VLSI Technology, (2016) pp. 1-2.
    [1-3] Chih-Yang, L., Ying-Chen, C., Meiqi, G., Chih-Hung, P., Fu-Yuan, J., Yi-Ting, T., Cheng Chih, H., Xiaohan, W., Min-Chen, C., Yao-Feng, C., Fei, Z., Fowler, B., Kuan-Chang, C., Tsung-Ming, T., Ting-Chang, C., Yonggang, Z., Sze, S. M., Banerjee, S. and Lee, J. C. (2017), "A universal model for interface-type threshold switching phenomena by comprehensive study of Vanadium oxide-based selector", in 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), (2017) pp. 1-2.
    [1-4] Lin, C.-Y., Chen, P.-H., Chang, T.-C., Chang, K.-C., Zhang, S.-D., Tsai, T.-M., Pan, C.-H., Chen, M.-C., Su, Y.-T., Tseng, Y.-T., Chang, Y.-F., Chen, Y.-C., Huang, H.-C. and Sze, S. M., "Attaining resistive switching characteristics and
    62
    selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode", Nanoscale. Vol. 9, (2017) pp. 8586-8590.
    [1-5] Michalas, L., Stathopoulos, S., Khiat, A. and Prodromakis, T., "Conduction mechanisms at distinct resistive levels of Pt/TiO2-x/Pt memristors", Applied Physics Letters. Vol. 113, (2018) pp. 143503.
    [1-6] Fang, Z., Yu, H., Li, X., Singh, N., Lo, G. Q. and Kwong, D. L., "Multilayer-Based Forming-Free RRAM Devices with Excellent Uniformity", Electron Device Letters, IEEE. Vol. 32, (2011) pp. 566-568.
    [1-7] Khurana, G., Kumar, N., Chhowalla, M., Scott, J. F. and Katiyar, R. S., "Non-Polar and Complementary Resistive Switching Characteristics in Graphene Oxide devices with Gold Nanoparticles: Diverse Approach for Device Fabrication", Scientific Reports. Vol. 9, (2019) pp. 15103.
    [1-8] Takashima, D., "Overview of FeRAMs: Trends and perspectives", in 2011 11th Annual Non-Volatile Memory Technology Symposium Proceeding, (2011) pp. 1-6.
    [1-9] Ali, T., Polakowski, P., Riedel, S., Büttner, T., Kämpfe, T., Rudolph, M., Pätzold, B., Seidel, K., Löhr, D., Hoffmann, R., Czernohorsky, M., Kühnel, K., Steinke, P., Calvo, J., Zimmermann, K. and Müller, J., "High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty", IEEE
    63
    Transactions on Electron Devices. Vol. 65, (2018) pp. 3769-3774.
    [1-10] Florent, K., Lavizzari, S., Piazza, L. D., Popovici, M., Vecchio, E., Potoms, G., Groeseneken, G. and IHoudt, J. V., "First demonstration of vertically stacked ferroelectric Al doped HfO2 devices for NAND applications", in 2017 Symposium on VLSI Technology, (2017) pp. T158-T159.
    [1-11] Chan, C. Y., Chen, K. Y., Peng, H. K. and Wu, Y. H. (2020), "FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-Pulse Cycling by Interface Engineerlng Using High-k AlON", in 2020 IEEE Symposium on VLSI Technology, pp. 1-2.
    [1-12] Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S. and Piramanayagam, S. N., "Spintronics based random access memory: a review", Materials Today (2017)
    [1-13] Krebs, D., Raoux, S., Rettner, C. T., Burr, G. W., Salinga, M. and Wuttig, M., "Threshold field of phase change memory materials measured using phase change bridge devices", Applied Physics Letters. Vol. 95, (2009) pp. 082101.
    [1-14] Chen, Y. C., Rettner, C. T., Raoux, S., Burr, G. W., Chen, S. H., Shelby, R. M., Salinga, M., Risk, W. P., Happ, T. D., McClelland, G. M., Breitwisch, M., Schrott, A., Philipp, J. B., Lee, M. H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C. F., Joseph, E., Zaidi, S., Yee, B., Lung, H. L., Bergmann, R. and Lam, C., "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb", in 2006 International
    64
    Electron Devices Meeting, (2006) pp. 1-4.
    [1-15] Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R. O., Yamada, N., Takata, M. and Kojima, R., "From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials", Nat Mater. Vol. 10, (2011) pp. 129-134.
    [1-16] Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R. O., Yamada, N., Takata, M. and Kojima, R., "From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials", Nature Materials. Vol. 10, (2011) pp. 129-134.
    [1-17] Fong, S., Neumann, C. M. and Wong, H. P., "Phase-Change Memor™ Towards a Storage-Class Memory", IEEE Transactions on Electron Devices. Vol. 64, (2017) pp. 4374-4385.
    [1-18] Wu, Q., Banerjee, W., Cao, J., Ji, Z., Li, L. and Liu, M., "Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices", Applied Physics Letters. Vol. 113, (2018) pp. 023105.
    [1-19] Linn, E., Rosezin, R., Kügeler, C. and Waser, R., "Complementary resistive switches for passive nanocrossbar memories", Nature Materials. Vol. 9, (2010) pp. 403-406.
    65
    [1-20] Khurana, G., Kumar, N., Chhowalla, M., Scott, J. F. and Katiyar, R. S., "Non-Polar and Complementary Resistive Switching Characteristics in Graphene Oxide devices with Gold Nanoparticles: Diverse Approach for Device Fabrication", Scientific Reports. Vol. 9, (2019) pp. 15103.
    [1-21] Ielmini, D. and Ambrogio, S., "Emerging neuromorphic devices", Nanotechnology. Vol. 31, (2019) pp. 092001.
    [1-22] Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T., Rajendran, B., Leblebici, Y., Sebastian, A. and Eleftheriou, E., "Neuromorphic computing with multi-memristive synapses", Nature Communications. Vol. 9, (2018) pp. 2514.
    [1-23] Kumar, D., "A Study about Non-Volatile Memories", Imperial journal of interdisciplinary research. Vol. 2, (2016).
    [1-24] Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R. and Xie, Y. (2009), Hybrid cache architecture with disparate memory technologies.
    Chapter 2
    [2-1] Wong, H. P., Lee, H., Yu, S., Chen, Y., Wu, Y., Chen, P., Lee, B., Chen, F. T. and Tsai, M., "Metal–Oxide RRAM", Proceedings of the IEEE. Vol. 100, (2012) pp. 1951-1970.
    66
    [2-2] Zahoor, F., Azni Zulkifli, T. Z. and Khanday, F. A., "Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications", Nanoscale Research Letters. Vol. 15, (2020) pp. 90.
    [2-3] Yu, S., Guan, X. and Wong, H. S. P., "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model", Applied Physics Letters. Vol. 99, (2011) pp. 063507.
    [2-4] Chiu, F.-C., "A Review on Conduction Mechanisms in Dielectric Films", Advances in Materials Science and Engineering. Vol. 2014, (2014) pp. 578168.
    Chapter 3
    [3-1] Xiong, D., Li, W. and Liu, L., "Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Long-Term Oxygen Evolution Performance", Chem Asian J. Vol. 12, (2017) pp. 543-551.
    [3-2] Torchynska, T., Macotela, L., Khomenkova, L., Gourbilleau, F. and Rojas, L., "Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering", Journal of Materials Science: Materials in Electronics. Vol. 31, (2020).
    [3-3] Mullapudi, G. S. R., Velazquez-Nevarez, G. A., Avila-Avendano, C., Torres-
    67
    Ochoa, J. A., Quevedo-López, M. A. and Ramírez-Bon, R., "Low-Temperature Deposition of Inorganic–Organic HfO2–PMMA Hybrid Gate Dielectric Layers for High-Mobility ZnO Thin-Film Transistors", ACS Applied Electronic Materials. Vol. 1, (2019) pp. 1003-1011.
    [3-4] Kim, K. S. and Winograd, N., "X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment", Surface Science. Vol. 43, (1974) pp. 625-643.
    [3-5] Chien, F. S. S., Wu, Y. T., Lai, G. L. and Lai, Y. H., "Disproportionation and comproportionation reactions of resistive switching in polycrystalline NiOx films", Applied Physics Letters. Vol. 98, (2011) pp. 153513.
    Chapter 4
    [4-1] Jena, A. K., Sahoo, A. K. and Mohanty, J., "Effects of magnetic field on resistive switching in multiferroic based Ag / BiFeO3 / FTO RRAM device", Applied Physics Letters. Vol. 116, (2020) pp. 092901.
    [4-2] Tsai, T.-M., Chang, K.-C., Chang, T.-C., Syu, Y.-E., Liao, K.-H., Tseng, B.-H. and Sze, S. M., "Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment", Applied Physics Letters. Vol. 101, (2012) pp. 112906.
    68
    [4-3] Chen, K.-H., Cheng, C.-M., Li, C.-Y. and Huang, S.-J., "Hopping conduction distance of bipolar switching GdOx resistance random access memory thin films devices modified by different constant compliance current", Microelectronics Reliability. Vol. 91, (2018) pp. 330-334.
    [4-4] Ding, X., Feng, Y., Huang, P., Liu, L. and Kang, J., "Low-Power Resistive Switching Characteristic in HfO2/TiOx Bi-Layer Resistive Random-Access Memory", Nanoscale Research Letters. Vol. 14, (2019) pp. 157.
    [4-5] Ma, G., He, Y., Liu, C., Wang, H., Tseng, Y. and Chang, T., "Realization of Storage and Synaptic Simulation Behaviors Based on Different Forming Modes", IEEE Electron Device Letters. Vol. 40, (2019) pp. 1257-1260.
    [4-6] Zhao, M., Wu, H., Gao, B., Sun, X., Liu, Y., Yao, P., Xi, Y., Li, X., Zhang, Q., Wang, K., Yu, S. and Qian, H. (2018), "Characterizing Endurance Degradation of Incremental Switching in Analog RRAM for Neuromorphic Systems", in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 20.22.21-20.22.24.
    [4-7] Subhechha, S., Degraeve, R., Roussel, P., Goux, L., Clima, S., Meyer, K. D., Houdt, J. V. and Kar, G. S., "Regular and Inverted Operating Regimes in TiN/a-Si/TiOx/TiN RRAM Devices", IEEE Electron Device Letters. Vol. 39, (2018) pp. 351-354.
    [4-8] Jia, C., Kim, S., Chen, Y., Kim, M., Li, Y., Miao, X., Chang, Y., Park, B. and Lee,
    69
    J. C. (2018), "Synaptic properties considering temperature effect in HfOx-based memristor - Demonstration of homo-thermal synaptic behaviors", in 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1-2.
    [4-9] Zhang, F., Zhang, H., Shrestha, P. R., Zhu, Y., Maize, K., Krylyuk, S., Shakouri, A., Campbell, J. P., Cheung, K. P., Bendersky, L. A., Davydov, A. V. and Appenzeller, J. (2018), "An Ultra-Fast Multi-level MoTe2-based RRAM", in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 22.27.21-22.27.24.
    [4-10] Zhang, X., Liu, S., Zhao, X., Wu, F., Wu, Q., Wang, W., Cao, R., Fang, Y., Lv, H., Long, S., Liu, Q. and Liu, M., "Emulating Short-Term and Long-Term Plasticity of Bio-Synapse Based on Cu/a-Si/Pt Memristor", IEEE Electron Device Letters. Vol. 38, (2017) pp. 1208-1211.
    [4-11] Zhao, M., Wu, H., Gao, B., Zhang, Q., Wu, W., Wang, S., Xi, Y., Wu, D., Deng, N., Yu, S., Chen, H. and Qian, H. (2017), "Investigation of statistical retention of filamentary analog RRAM for neuromorphic computing", in 2017 IEEE International Electron Devices Meeting (IEDM), pp. 39.34.31-39.34.34.
    [4-12] Woo, J., Padovani, A., Moon, K., Kwak, M., Larcher, L. and Hwang, H., "Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications", IEEE Electron Device Letters.
    70
    Vol. 38, (2017) pp. 1220-1223.
    [4-13] Woo, J., Moon, K., Song, J., Lee, S., Kwak, M., Park, J. and Hwang, H., "Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems", IEEE Electron Device Letters. Vol. 37, (2016) pp. 994-997.
    Chapter 5
    [5-1] Mulaosmanovic, H., Dünkel, S., Müller, J., Trentzsch, M., Beyer, S., Breyer, E. T., Mikolajick, T. and Slesazeck, S., "Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs", IEEE Electron Device Letters. Vol. 41, (2020) pp. 1420-1423.
    [5-2] Ali, T., Kühnel, K., Czernohorsky, M., Rudolph, M., Pätzold, B., Olivo, R., Lehninger, D., Mertens, K., Müller, F., Lederer, M., Hoffmann, R., Mart, C., Kalkani, M. N., Steinke, P., Kämpfe, T., Müller, J., Houdt, J. V., Seidel, K. and Eng, L. M. (2020), "Impact of Ferroelectric Wakeup on Reliability of Laminate based Si-doped Hafnium Oxide (HSO) FeFET Memory Cells", in 2020 IEEE International Reliability Physics Symposium (IRPS), pp. 1-9.
    [5-3] Bae, J. H., Kwon, D., Jeon, N., Cheema, S., Tan, A. J., Hu, C. and Salahuddin, S., "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors", IEEE Electron Device Letters. Vol. 41, (2020) pp. 1637-1640.

    QR CODE