簡易檢索 / 詳目顯示

研究生: 蔡淮傑
Tsai, Huai-Chieh
論文名稱: 具有動態調整供應電壓能力的電流可調式神經刺激器
A Current-Tunable Neural Stimulator with Dynamic Power Supply Technique
指導教授: 陳新
Chen, Hsin
口試委員: 廖育德
Liao, Yu-Do
吳玉威
Wu, Yu-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 類比電路設計生醫電路設計電荷幫浦神經刺激器高效率電流刺激
外文關鍵詞: analog-circuit, Biomedical-circuit-design, charge-pump, neural-stimulator, high-power-efficiency-current-stimulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,人們致力於發展植入式腦機介面微系統,希望能結合記錄單元與刺激單元,藉由記錄單元偵測腦中異常訊號,透過類比數位轉換器(ADC)轉成數位訊號,經由數位訊號處理(DSP)後,來進行病情診斷,並利用刺激器提供相對應的電刺激訊號來進行神經訊號調整,以抑制腦部不正常放電。
    對於植入型神經電刺激器,功率消耗(power consumption)是決定電池大小的關鍵因素,提升能量轉換效率能夠縮小電池的尺寸以及增加電池壽命,當裝置的尺寸變小以及使用時間變長時,對病患的安全跟舒適度都能大大提升,因此提升電刺激器的能量轉換效率是首要目標。
    本論文在低電壓系統1.8V/3.5V中設計一個能應用於腦機介面,可提供深層腦部電刺激治療的電流可調式神經刺激器,能提供70uA到4mA(6 bit)的電流刺激,並能透過外接的電阻校正刺激電流,且利用動態調整供應電壓技術追蹤電極電壓,提升刺激效率。而升壓電路選擇效率較高的CCTS電荷幫浦,它能產生最高12V的電壓供刺激使用。為了提高刺激效率,此供應電壓能偵測電極上的電壓,並藉由回授系統調整輸出電壓,使用一個四位元的電壓數位類比轉換器改變刺激電壓,變動範圍從3.5V到12V。電荷幫浦本身使用級數控制電路技術,在較低輸出電壓時,能自動改變電荷幫浦級數,提高能量轉換效率。
    本晶片透過台積電T18HVG2製程完成下線,而電荷幫浦有完成量測,並驗證晶片功能。


    In recent years, people have devoted themselves to the development of implantable brain-computer interface microsystems, hoping to combine the recording the unit and the stimulation unit. They use the recording unit to detect abnormal signals in the brain, and convert them into digital signals through an analog-to-digital converter(ADC). And digital signals after being processed by the signal processing converter(DSP), the condition is diagnosed, and the stimulator is used to provide the corresponding electrical stimulation signal to perform DBS, so as to inhibit the abnormal discharge of the brain.
    For implantable electrical neural stimulators, power consumption is a key factor in determining the size of the battery. Improving energy conversion efficiency can reduce the size of the battery and increase battery life. When the size of the device becomes smaller and the using time becomes longer, the safety and comfort of patients can be greatly improved, so improving the energy conversion efficiency of the electrical stimulator is the primary goal
    This paper designs a current-tunable neural stimulator that can be applied to the brain-computer interface and provide deep brain electrical stimulation therapy in the low-voltage system 1.8V/3.5V. It can provide stimulation current from 70uA to 4mA (6 bit), this current can be calibrated through an external resistor. It also uses dynamic power supply technology to trace electrode voltage, improving stimulation efficiency. And the boosted circuit we select a CCTS charge pump, which can generate a maximum voltage of 12V for stimulation. For improving the efficiency of stimulation, the supply voltage can be detected from the electrode, and adjust the output voltage through the feedback system by a four-bit voltage digital-to-analog converter which is used to change the stimulation voltage (3.5V to 12V). The charge pump also uses the stage select circuit technology to improve the energy conversion efficiency, which can automatically change the charge pump stage when the output voltage is low.
    This chip is taped-out in the TSMC T18HVG2 process. The charge pump has completed the measurement, and verified the function of the chip.

    目錄 摘要 i Abstract ii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究動機與目標 1 1.2 論文內容概述 2 第二章 文獻回顧 3 2.1 閉迴路深層電刺激系統 3 2.2 高壓神經電流刺激驅動電路 4 2.2.1 電流刺激模式 4 2.2.2 驅動電路架構 5 2.3 動態調整供應電壓電刺激驅動電路 7 2.4 應用於神經電刺激的升壓電路 10 2.5 小結 13 第三章 高效率且寬負載電流範圍 電荷幫浦研究與晶片實現 14 3.1 系統架構 14 3.2 電路架構 15 3.2.1 電荷幫浦 15 3.2.2 靴帶式電流源及誤差放大器 17 3.2.3 電阻式數位類比轉換器(RDAC) 18 3.2.4 電壓控制震盪器(VCO) 19 3.2.5 時脈控制電路&電壓轉換器(level shift) 20 3.2.6 級數控制電路(Stage Selection Circuit) 21 3.2.7 HV-SPDT 電路 22 3.3 電路模擬結果 23 3.3.1 靴帶式電流源(Bootstrap current source) 23 3.3.2 誤差放大器(Error Amplifier) 25 3.3.3 電阻式數位類比轉換器(RDAC) 26 3.3.4 電壓控制震盪器(VCO) 28 3.3.5 HV-SPDT 電路 29 3.3.6 級數控制電路(Stage Selection Circuit) 29 3.3.7 電荷幫浦系統模擬 30 3.4 晶片佈局與規格 34 3.5 晶片量測結果 38 第四章 動態調整供應電壓電刺激 驅動電路研究與晶片實現 44 4.1 系統架構 44 4.2 電路架構 45 4.2.1 電壓餘度偵測器(voltage headroom detector) 45 4.2.2 數位有限狀態機(Digital FSM) 47 4.2.3 電荷幫浦(charge pump) 48 4.2.4 電流數位類比轉換器(IDAC) 49 4.3 電路模擬結果 50 4.3.1 電流數位類比轉換器(IDAC) 51 4.3.2 動態調整供應電壓電刺激驅動電路 53 4.4 晶片佈局與規格 57 第五章 結論與未來研究方向 61 5.1 結論與未來研究方向 61 參考文獻 62   圖目錄 圖2.1 閉迴路深層電刺激系統 3 圖2.2 雙向刺激模型 5 圖2.3電壓控制電阻電流源[5] 6 圖2.4寬擺動疊接電流鏡(WIDE SWING CASCODE CURRENT MIRROR) [5] 6 圖2.5傳統電流控制刺激驅動電路[6] 7 圖2.6 (A)雙向電流刺激波型 (B)電極上等效阻抗跨壓 (C)傳統電流刺激器能量消耗 (D)動態調整供應電壓電流刺激器能量消耗[7] 8 圖2.7 (A)動態調整主動整流器輸出電壓[7] (B)動態調整直流-直流轉換器輸出電壓[8] 9 圖2.8 數位式動態調整供應電壓技術 9 圖2.9 交叉耦合式電壓幫浦(CROSS-COUPLE CHARGE PUMP)[6] 10 圖2.10單位電荷幫浦操作原理 11 圖2.11 電荷幫浦效率 V.S 輸出電壓以及對應到幫浦級數 11 圖2.12 可控制級數的電荷幫浦 12 圖2.13 (A)幫浦模式(PUMP MODE) (B)繞道模式(BYPASS MODE) 12 圖3.1 電荷幫浦系統架構圖 15 圖3.2四級電荷幫浦 16 圖3.3 偏壓電路跟誤差放大器 17 圖3.4 二進位權重電阻式數位類比轉換器 18 圖3.5 電壓控制震盪器 19 圖3.6 時脈控制電路 20 圖3.7 電壓轉換器 20 圖3.8 幫浦模式(PUMP-MODE) 21 圖3.9 繞道模式(BYPASS-MODE) 21 圖3.10 HV-SPDT電路 23 圖3.11 固定轉導偏壓電流PRE-SIMULATION結果 24 圖3.12 固定轉導偏壓電流POST-SIMULATION結果 24 圖3.13 啟動電路(START-UP) POST-SIMULATION結果 24 圖3.14誤差放大器AC特性的5CORNER POST-SIM模擬結果 25 圖3.15 輸出動態範圍 26 圖3.16 DAC模擬結果 26 圖3.17 DNL模擬結果 27 圖3.18 INL 模擬結果 27 圖3.19電壓控制震盪器模擬圖 28 圖3.20 震盪頻率對應輸入電壓關係圖 28 圖3.21 HV-SPDT 行為模擬 29 圖3.22 級數控制電路行為模擬 30 圖3.23 電荷幫浦輸出電壓在不同電流負載下的表現(PRE-SIM) 30 圖3.24 電荷幫浦輸出電壓在不同CORNER下的表現 31 圖3.25 電荷幫浦輸出電壓在不同電流負載下的表現(POST-SIM) 31 圖3.26 電荷幫浦級數切換模擬圖 32 圖3.27 有無使用級數控制電路的輸出電壓比較圖 33 圖3.28電荷幫浦能量轉換效率比較圖 33 圖3.29 電荷幫浦晶片佈局圖 34 圖3.30 電荷幫浦晶片腳位分布圖 35 圖3.31 晶片量測環境 38 圖3.32 RDAC量測結果 39 圖3.33 RDAC的DNL&INL 量測結果 39 圖3.34 VCO量測結果 40 圖3.35 電荷幫浦最大負載電流輸出電壓量測結果 40 圖3.36 電荷幫浦級數切換對應不同參考電壓的輸入波形圖 41 圖3.37 電荷幫浦級數切換的輸出電壓量測結果 41 圖3.38 RDAC從0001切到1101並配合電荷幫浦級數切換的輸入波形圖 42 圖3.39 電荷幫浦對應到的輸出電壓(12V~3.5V)量測結果 42 圖3.40 能量轉換效率量測比較圖 43 圖4.1 動態調整供應電壓電刺激驅動電路之系統架構 45 圖4.2電流驅動電路架構圖 46 圖4.3 四位元計數器狀態機 47 圖4.4 電荷幫浦系統架構圖 49 圖4.5 二進位權重電流鏡數位類比轉換器[15] 50 圖4.6 IDAC模擬結果 51 圖4.7 DNL模擬結果 52 圖4.8 INL模擬結果 52 圖4.9 RF=1KΩ,CDL=100NF,ISTIM=4MA 53 圖4.10 RF=1.5KΩ,CDL=100NF,ISTIM=4MA 54 圖4.11 RF=2KΩ,CDL=100NF,ISTIM=4MA 55 圖4.12 RF=140KΩ,CDL=100NF,ISTIM=70UA 56 圖4.13 電刺激驅動電路的晶片佈局圖 57 圖4.14 電刺激驅動電路腳位分布圖 58   表目錄 表3.1 誤差放大器AC特性規格 25 表3.2 電荷幫浦晶片腳位功能對照表 35 表3.3 電荷幫浦模擬規格表 37 表3.4 電荷幫浦模擬與量測比較圖 43 表4.1 計數器狀態以及訊號功能描述 48 表4.2 電刺激驅動電路的腳位功能對照表 58 表4.3 電刺激驅動電路模擬規格表 60

    參考文獻
    [1] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. P. Velazquez and R. Genov, "64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator," in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2494-2510, Oct. 2013, doi: 10.1109/JSSC.2013.2272952.
    [2] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo and P. Mohseni, "A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface," in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 731-745, April 2011, doi: 10.1109/JSSC.2011.2108770.
    [3] Y. -P. Lin et al., "A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models," in IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 98-112, Feb. 2016, doi: 10.1109/TBCAS.2015.2403282.
    [4] J.-H. Tsai et al., “A 1 V input, 3 V-to-6 V output, 58%-efficient integrated charge pump with a hybrid topology for area reduction and an improved efficiency by using parasitics,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2533–2548, Nov. 2015, doi:10.1109/JSSC.2015.2465853.
    [5] M. Ghovanloo and K. Najafi, “A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators,” IEEE Trans. Biomedical Engineering, vol. 52, no. 1, pp. 97-105, Jan. 2005.
    [6] A Digitally Dynamic Power Supply Technique for 16-Channel 12 V-Tolerant Stimulator Realized in a 0.18-μm 1.8-V/3.3-V Low-Voltage CMOS Process Zhicong Luo, Student Member, IEEE, Ming-Dou Ker, Fellow, IEEE, Tzu-Yi Yang, and Wan-Hsueh Cheng
    [7] An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis Ian Williams, Student Member, IEEE, and Timothy G. Constandinou, Senior Member, IEEE
    [8] H.-M. Lee, H. Park, and M. Ghovanloo, “A power-efficient wireless system with adaptive supply control for deep brain stimulation,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2203–2206, Sep. 2013.
    [9] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Design of charge pump circuit with consideration of gate oxide reliability in low-voltage CMOS process,” IEEE J.Solid-State Circuits, vol. 41, pp. 1100–1107, May. 2006
    [10] M. Cazzaniga and T. Liu, “Charge pump system that dynamically selects number of active stages,” U.S. Patent 8 339 185 B2, Dec. 2012
    [11] G. Palumbo, D. Pappalardo, and M. Gaibotti, “Voltage regulator based on an high-efficiency adaptive charge pump,” in Proc. 9th Int. Conf.Electron., Circuits Syst., Sep. 2002, pp. 61–64
    [12] C. Boffino, A. Cabrini, O. Khouri, and G. Torelli, “High-efficiency control structure for CMOS flash memory charge pumps,” in Proc. IEEE Int. Symp. Circuits Syst., May 2005, pp. 121–124.
    [13] T.-Y. Liu et al., “A 130.7-mm2 2-layer 32-Gb ReRAM memory device in 24-nm technology,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 140–153, Jan. 2014.
    [14] Z. Luo, L.-C. Yu, and M.-D. Ker, “An efficient, wide-output, high-voltage charge pump with a stage selection circuit realized in a low-voltage CMOS process,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 9, pp. 3437–3444, Sep. 2019, doi:10.1109/TCSI.2019.2924581
    [15] B. Razavi, “The current-steering DAC [a circuit for all seasons],” IEEE Solid-State Circuits Magazine, vol. 10, no. 1, pp. 11–15, 2018.

    QR CODE