簡易檢索 / 詳目顯示

研究生: 胡宏瑀
Hu, Hung Yu
論文名稱: 耗散粒子動力學模擬X形剛性-柔性多親性嵌段共聚物於溶液中之相態衍變
Morphological Transition of X-shaped Rod-Coil Polyphilic Block Copolymer in Solution via Dissipative Particle Dynamics Simulation
指導教授: 張榮語
Chang, Rong Yeu
口試委員: 吳建興
Wu, Jian Xing
朱一民
Chu, I Min
許嘉翔
Hsu, Chia Hsiang
曾煥錩
Tzeng, Huan Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 耗散粒子動力學模擬高分子形態學自組裝行為剛性-柔性嵌段共聚物
外文關鍵詞: Dissipative Particle Dynamics Simulation, Self-Assembly, Polymer Morphology, Rod-Coil copolymer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用耗散粒子動力學模擬研究X形剛性-柔性多親性嵌段共聚物於溶液中之平衡結構,此X形分子由剛性嵌段核心與兩端極性基團構成主鏈後再接枝兩條柔軟側鏈形成。藉由改變兩條側鏈間相容性、側鏈長度與系統中溶劑濃度來探討對形態的影響。
    研究結果指出調整側鏈長度以及溶液濃度,能夠有效的控制形態變化;改變側鏈間的相容性則能形成階級性結構。在純共聚物態和溶劑濃度φ_S=10%、30%系統中大多呈現由主鏈形成的網狀結構,但在特定的側鏈長度下會有完美的形態出現,如六角網柱狀結構;φ_S=50、70%溶劑濃度下形成各式的網狀結構,發現透過側鏈長度與溶劑濃度可以調控複雜奈米級網狀的密集程度;φ_S=90%系統中,會形成微胞結構,尤其在不相容側鏈條件時形成的微胞階級性結構在生醫材料上非常具有應用潛力。由於本論文模擬的分子結構性質特殊,因而發現許多新穎的結構,期許這些結果能提供在生醫和光電上的新材料開發與想法。


    Dissipative Particle Dynamics Simulations are used to investigate the morphological transition of X-shaped rod-coil polyphilic molecules in solution. These X-shaped molecules consist of a rod-like core, with a polar group at each end and two lateral chains. The influences of changing the two lateral chains relative miscibility, lateral chains length and solvent concentration in solution on the morphologies are discussed.
    The results show that changing the two lateral chains length and the solvent concentration can effectively control the morphologies. And the hierarchical structure-within-structure will be formed by changing relative miscibility of the two laterals chains. At solvent concentration φ_S=10%, the morphologies are almost network structures which are formed by main chain of X-shaped molecules. Interestingly, perfect morphologies formed at specific lateral chains length, such as hexagonal column network structure. At solvent concentration φ_S=30% and 50%, the X-shaped molecules self-assemble into vary kinds of network structures, and the network density can be easily controlled by changing the length of two lateral chains and the concentration. At solvent concentration φ_S=90%, the molecules will self-assemble into micelle hierarchical structure-within-structure while the two lateral chains are in immiscibility condition, that kind of structures is very attractive in biomaterials. Since the structure of molecules model is complex and special, there are much novel morphology are formed. We hope these results can be applied in biomaterials and optoelectronics materials.

    第一章 緒論 1.1 前言 1.2 研究目的與動機 1.3 Rod-coil雙親性嵌段共聚物 1.4 耗散粒子動力學簡介 第二章 文獻回顧 2.1 耗散粒子動力學模擬文獻回顧 2.2 嵌段共物於溶液中之形態研究 2.2.1 全柔性嵌段共聚物 2.2.2 剛性-柔性嵌段共聚物 2.2.3 多親性分子文獻回顧 第三章 研究方法 3.1 耗散粒子動力學基本理論 3.1.1 耗散粒子動力學模擬流程架構 3.1.2 運動方程式的數值方法 3.1.3 週期性邊界 3.1.4 最小鏡像法 3.2 耗散粒子動力學力場 3.2.1 粒子間作用力 3.2.2 分子內作用力 3.3 剛性嵌段模擬方法 3.3.1 SHAKE演算法與RATTLE演算法 3.3.2 RATTLE演算法理論 3.4 系統性質統計 第四章 模擬系統架構 4.1 模擬系統架構 4.2 系統驗證 4.2.1 耗散粒子動力學單顆粒子系統 4.2.2 雙嵌段共聚物系統驗證 4.2.3 π形共聚物於溶液中系統驗證 4.2.4 剛性-柔性嵌段共聚物於溶液中系統驗證 4.3 本研究之模擬分子模型與系統參數 第五章 結果與討論 5.1 多親性分子於αCD=20時在水溶液中之形態研究 5.1.1 分子Xt1在各個濃度下的模擬結果 5.1.2 分子Xt2在各個濃度下的模擬結果 5.1.3 分子Xt3在各個濃度下的模擬結果 5.1.4 分子Xt4在各個濃度下的模擬結果 5.1.5 分子Xt5在各個濃度下的模擬結果 5.2 多親性分子於αCD=40時在水溶液中之形態研究 5.2.1 分子Xt1在各個濃度下的模擬結果 5.2.2 分子Xt2在各個濃度下的模擬結果 5.2.3 分子Xt3在各個濃度下的模擬結果 5.2.4 分子Xt4在各個濃度下的模擬結果 5.2.5 分子Xt5在各個濃度下的模擬結果 5.3 由形態圖觀察rod嵌段聚集行為 5.4 特徵結構分析與比較 5.5 粒子之間的保守能變化 5.6 形態相圖 第六章 結論與未來展望 參考文獻

    1. Tao, Y.F., B.W. Ma, and R.A. Segalman, Self-Assembly of Rod-Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008. 41(19): p. 7152-7159.
    2. Lim, Y.B., K.S. Moon, and M. Lee, Rod-coil block molecules: their aqueous self-assembly and biomaterials applications. Journal of Materials Chemistry, 2008. 18(25): p. 2909-2918.
    3. Kirkensgaard, J.J.K., Novel network morphologies and compositionally robust 3-colored perforated lamellar phase in A(BC)(2) mikto-arm star copolymer melts. Soft Matter, 2010. 6(24): p. 6102-6108.
    4. Guo, Y.Y., Z.W. Ma, Z.J. Ding, and R.K.Y. Li, Study of hierarchical microstructures self-assembled by pi-shaped ABC block copolymers in dilute solution using self-consistent field theory. Journal of Colloid and Interface Science, 2012. 379: p. 48-55.
    5. Chen, H.Y. and E. Ruckenstein, Self-assembly of pi-shaped copolymers. Soft Matter, 2012. 8(5): p. 1327-1333.
    6. Shao, X., K. Yang, and Y.Q. Ma, A Dissipative Particle Dynamics Study on the Morphologies of H-Shaped Block Copolymers in Solvent. International Journal of Modern Physics B, 2011. 25(6): p. 843-850.
    7. Huang, C.I., C.H. Liao, and T.P. Lodge, Multicompartment micelles from A(2)-star-(B-alt-C) block terpolymers in selective solvents. Soft Matter, 2011. 7(12): p. 5638-5647.
    8. Xu, L.F., Z.Q. Zhang, F. Wang, D.D. Xie, S. Yang, T. Wang, L.J. Feng, and C.C. Chu, Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(epsilon-caprolactone) (PEO-PPO-PCL) copolymers. Journal of Colloid and Interface Science, 2013. 393: p. 174-181.
    9. Posocco, P., M. Fermeglia, and S. Pricl, Morphology prediction of block copolymers for drug delivery by mesoscale simulations. Journal of Materials Chemistry, 2010. 20(36): p. 7742-7753.
    10. Guo, X.D., J.P.K. Tan, S.H. Kim, L.J. Zhang, Y. Zhang, J.L. Hedrick, Y.Y. Yang, and Y. Qian, Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials, 2009. 30(33): p. 6556-6563.
    11. Luo, Z.L. and J.W. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release, 2012. 162(1): p. 185-193.
    12. Zhao, Y., Y.T. Liu, Z.Y. Lu, and C.C. Sun, Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study. Polymer, 2008. 49(22): p. 4899-4909.
    13. Liu, C.L., C.H. Lin, C.C. Kuo, S.T. Lin, and W.C. Chen, Conjugated rod-coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Progress in Polymer Science, 2011. 36(5): p. 603-637.
    14. Zhang, S.G., Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 2003. 21(10): p. 1171-1178.
    15. de Cuendias, A., R.C. Hiorns, E. Cloutet, L. Vignau, and H. Cramail, Conjugated rod-coil block copolymers and optoelectronic applications. Polymer International, 2010. 59(11): p. 1452-1476.
    16. Ungar, G., C. Tschierske, V. Abetz, R. Holyst, M.A. Bates, F. Liu, M. Prehm, R. Kieffer, X.B. Zeng, M. Walker, B. Glettner, and A. Zywocinski, Self-Assembly at Different Length Scales: Polyphilic Star-Branched Liquid Crystals and Miktoarm Star Copolymers. Advanced Functional Materials, 2011. 21(7): p. 1296-1323.
    17. Chou, S.H., D.T. Wu, H.K. Tsao, and Y.J. Sheng, Morphology and internal structure control of rod-coil copolymer aggregates by mixed selective solvents. Soft Matter, 2011. 7(19): p. 9119-9129.
    18. Wan, Y. and D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007. 107(7): p. 2821-2860.
    19. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
    20. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
    21. Tang, Y.H., Y.D. He, and X.L. Wang, Three-dimensional analysis of membrane formation via thermally induced phase separation by dissipative particle dynamics simulation. Journal of Membrane Science, 2013. 437: p. 40-48.
    22. Sliozberg, Y.R., K.E. Strawhecker, J.W. Andzelm, and J.L. Lenhart, Computational and experimental investigation of morphology in thermoplastic elastomer gels composed of AB/ABA blends in B-selective solvent. Soft Matter, 2011. 7(16): p. 7539-7551.
    23. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
    24. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
    25. Li, X.J., I.V. Pivkin, H.J. Liang, and G.E. Karniadakis, Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study. Macromolecules, 2009. 42(8): p. 3195-3200.
    26. Chou, S.H., H.K. Tsao, and Y.J. Sheng, Structural aggregates of rod-coil copolymer solutions. Journal of Chemical Physics, 2011. 134(3).
    27. He, P.T., X.J. Li, M.G. Deng, T. Chen, and H.J. Liang, Complex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents. Soft Matter, 2010. 6(7): p. 1539-1546.
    28. Crane, A.J., F.J. Martinez-Veracoechea, F.A. Escobedo, and E.A. Muller, Molecular dynamics simulation of the mesophase behaviour of a model bolaamphiphilic liquid crystal with a lateral flexible chain. Soft Matter, 2008. 4(9): p. 1820-1829.
    29. Crane, A.J. and E.A. Muller, Self-Assembly of T-Shaped Polyphilic Molecules in Solvent Mixtures. Journal of Physical Chemistry B, 2011. 115(16): p. 4592-4605.
    30. Liu, X.H., K.D. Yang, and H.X. Guo, Dissipative Particle Dynamics Simulation of the Phase Behavior of T-Shaped Ternary Amphiphiles Possessing Rodlike Mesogens. Journal of Physical Chemistry B, 2013. 117(30): p. 9106-9120.
    31. Lin, Y.L., H.Y. Chang, Y.J. Sheng, and H.K. Tsao, Structural and mechanical properties of polymersomes formed by rod-coil diblock copolymers. Soft Matter, 2013. 9(19): p. 4802-4814.
    32. Lin, Y.L., H.Y. Chang, Y.J. Sheng, and H.K. Tsao, Photoresponsive Polymersomes Formed by Amphiphilic Linear-Dendritic Block Copolymers: Generation-Dependent Aggregation Behavior. Macromolecules, 2012. 45(17): p. 7143-7156.
    33. Levine, Y.K., A.E. Gomes, A.F. Martins, and A. Polimeno, A dissipative particle dynamics description of liquid-crystalline phases. I. Methodology and applications. Journal of Chemical Physics, 2005. 122(14).
    34. Li, C.S., W.C. Wu, Y.J. Sheng, and W.C. Chen, Effects of chain architectures on the surface structures of conjugated rod-coil block copolymer brushes. Journal of Chemical Physics, 2008. 128(15).
    35. AlSunaidi, A., W.K. Den Otter, and J.H.R. Clarke, Liquid-crystalline ordering in rod-coil diblock copolymers studied by mesoscale simulations. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004. 362(1821): p. 1773-1781.
    36. Ryckaert, J.P., G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 1977. 23: p. 327-341.
    37. Verlet, L., Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-&.
    38. Andersen, H.C., Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics Calculations. Journal of Computational Physics, 1983. 52(1): p. 24-34.
    39. Swope, W.C., H.C. Andersen, P.H. Berens, and K.R. Wilson, A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. Journal of Chemical Physics, 1982. 76(1): p. 637-649.
    40. He, L.L., L.X. Zhang, Y.S. Ye, and H.J. Liang, Solvent-Induced Self-Assembly of Polymer-Tethered Nanorods. Journal of Physical Chemistry B, 2010. 114(21): p. 7189-7200.
    41. Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids. Oxford University Press, 1989.
    42. Sadus, R.J., Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. ELSEVIER, 1999.
    43. Xia, J., D. Liu, and C.L. Zhong, Multicompartment micelles and vesicles from pi-shaped ABC block copolymers: a dissipative particle dynamics study. Physical Chemistry Chemical Physics, 2007. 9(38): p. 5267-5273.
    44. He, L.L., Z.Q. Pan, L.X. Zhang, and H.J. Liang, Microphase transitions of block copolymer/nanorod composites under shear flow. Soft Matter, 2011. 7(3): p. 1147-1160.
    45. Bates, M.A. and M. Walker, Dissipative particle dynamics simulation of quaternary bolaamphiphiles: multi-colour tiling in hexagonal columnar phases. Physical Chemistry Chemical Physics, 2009. 11(12): p. 1893-1900.
    46. Lin, Y.L., H.Y. Chang, Y.J. Sheng, and H.K. Tsao, Self-assembled polymersomes formed by symmetric, asymmetric and side-chain-tethered coil-rod-coil triblock copolymers. Soft Matter, 2014. 10(11): p. 1840-1852.
    47. Liu, Y.T., Y. Zhao, H. Liu, Y.H. Liu, and Z.Y. Lu, Spontaneous Fusion between the Vesicles Formed by A(2n)(B-2)(n) Type Comb-Like Block Copolymers with a Semiflexible Hydrophobic Backbone. Journal of Physical Chemistry B, 2009. 113(46): p. 15256-15262.
    48. Wang, H., Y.T. Liu, H.J. Qian, and Z.Y. Lu, Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers. Polymer, 2011. 52(9): p. 2094-2101.
    49. 羅予祥, 耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化. 國立清華大學化學工程學研究所碩士論文, 2012.
    50. 吳穎婷, 耗散粒子動力學模擬具有剛性鏈段之三嵌段共聚物與現性高分子共混系統之相態變化. 2011.
    51. 吳育銘, 利用耗散粒子動力學模擬「π」形的接枝高分子在平衡與非平衡系統下之相態衍變. 國立清華大學化學工程學研究所碩士論文, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE