研究生: |
李震謙 Li, Chen Chien |
---|---|
論文名稱: |
高介電係數閘極氧化層與矽鍺、鍺通道之介面工程應用於金氧半電晶體之製程研究 Process Study of High-k Gate Dielectric and Interface Engineering for MOSFETs with SiGe/ Ge Channel |
指導教授: |
張廖貴術
Chang Liao, Kuei Shu |
口試委員: |
趙天生
Chao, Tien Sheng 蔡銘進 Tsai, Ming Jinn 葉文冠 Yeh, Wen Kuan 李耀仁 Lee, Yao Jen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 半導體物理 、半導體製程技術 、金氧半電晶體 |
外文關鍵詞: | Semiconductor Physics, Semiconductor Manufacturing Technology, Metal Oxide Field Effect Transistor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年,為了持續改善金氧半電晶體元件的電特性,很多技術持續被引入金氧半電晶體元件中,包含使用含矽鍺材料的基板以及高介電常數氧化層等等,其中,為了持續微縮等效氧化層厚度,我們需要使用高介面係數氧化層來改善微縮所造成的漏電問題,但其製程熱穩定仍有待改善,而隨著元件持續微縮,通道載子遷移率卻持續下降,解決的方法之一就是使用擁有較高載子遷移率的材料,例如鍺,其電子遷移率為矽的兩倍,電洞遷移率為矽的四倍,因此很有機會應用在半導體製程上。
本論文研究如何整合矽鍺虛擬基板與高介電常數氧化層,使金氧半電晶體元件的電特性,包含臨界電壓、等效氧化層厚度以及載子遷移率等等可以進一步被改善,在矽鍺基板的比例選擇上,以含有30%較高鍺含量百分比的虛擬矽鍺基板為主,藉由堆疊氮氧化鈦與氮氧化鉭於高介電常數氧化鉿層之上來改善矽鍺電晶體之汲極電流、轉導與次臨界擺幅。此外,矽鍺通道與氮氧化鉭有很好的結合,其轉導退化特性與臨界電壓偏移特性等可靠度表現皆不錯。因此,氮氧化鉭可與矽鍺通道有良好的結合,並應用在金氧半電晶體上。
我們利用原子層化學氣相沉積系統來堆疊高介電係數氧化層,並在製程中用通入遠端電漿,在製程腔體中執行本位電漿氮化處理。經過本位電漿氮化處理後的金氧半電容元件,其等效氧化層厚度可以微縮到0.83奈米,而漏電流可以降低到1.7x10-3 A/cm2。對於可靠度量測而言,本位氨氣電漿氮化處理可以抑制定電場所誘導的平帶電壓偏移和漏電流,利用此氮化方法可以有效鈍化氧空缺以及抑制氧空缺的產生,因此本位電漿氮化處理可被視為一個很有潛力的氮化方法。
我們研究鹵素電漿在金氧半電晶體元件的介面處理對電性的影響,在金氧半電晶體元件的介面層經過鹵素電漿處理過後,氧化鉿介電層會形成四角形的晶向,此種晶向擁有較高的介電常數,因此可以得到較低的等效氧化層厚度。此外,經過氯氣電漿處理過後,可以提升載子遷移率和轉導,以及降低次臨界擺幅,因此,氯氣電漿可以有效的應用在金氧半電晶體元件的介面處理製程上。
在原子層化學氣相沉積系統中,利用水氣電漿在純鍺基板上成長氧化鍺,以此作為高介電係數氧化層與基板之間的介面層,在成長此介面層時,將整個腔體溫度升高到370°C,藉此讓介面層產生脫附效果,使二氧化鍺的成分升高,次氧化物成分降低,研究得知利用此法,氧化鍺鉿介面層內的4價鍺濃度高達95%,在電性上,可以微縮等效氧化層厚度到0.39奈米,也可以同時降低漏電流,然而,介面缺陷密度與頻率散射效應等電性仍待改善。
將氧化鋯與氧化鉿交互堆疊組成四種不同的組合,以此作為金氧半電晶體的介電層,而四種組合分別為,單層氧化鋯、單層氧化鉿、氧化鋯/氧化鉿、以及氧化鋯鉿;研究得知,具有單層氧化鋯的元件可以獲得較薄的等效氧化層厚度,但是因為其介面層品質不佳,故介面缺陷密度較高,有趣的是,以氧化鋯/氧化鉿雙層堆疊結構作為介電層,可使介面缺陷密度以及次臨界擺幅降低,而載子遷移率也可以同時提高到335 cm2/V-sec,此外,具有氧化鋯/氧化鉿雙層堆疊結構的金氧半電晶體,等效氧化層厚度可以微縮到0.62奈米,且漏電流可以降低到2x10-3 A/cm2。因此,氧化鋯/氧化鉿雙層堆疊結構非常有潛力應用在金氧半電晶體元件上。
SiGe virtual substrate and high-k dielectrics were introduced into Metal Oxide Field Effect Transistor (MOSFET) devices to improve the electrical characteristics. For ultrathin equivalent oxide thickness (EOT), a higher-k dielectric was proposed to solve the leakage current issue. However, a reduction in carrier mobility is also encountered. A promising candidate to solve this issue is to alternate Si channel with high mobility material like Ge, which can offer two times higher electron mobility and four times higher hole mobility than Si.
MOSFET with SiGe channel and higher-k gate dielectric are studied. Samples with TaON/HfO2 or TiON/HfO2 stacks show larger drain current, transconductance, and smaller subthreshold swing than that with single HfO2 layer. In addition, the reliability for SiGe MOSFET device is clearly improved with TaON/HfO2 stacks in terms of trans-conductance degradation and Vth shifts after hot-carrier stress. The integration of SiGe channel with TaON higher-k dielectric is useful for high performance MOSFETs.
Metal oxide semiconductor (MOS) devices with in-situ remote plasma treatment during high-k dielectric deposition are studied in this thesis. The EOT value and leakage current of the MOS device with in-situ NH3 plasma treated high-k dielectrics can be significantly reduced to 0.83 nm and 1.7x10-3 A/cm2, respectively. The stress-induced flat-band voltage shifts and leakage current are obviously reduced as well. In-situ remote plasma treatment also provides a good approach of nitridation for high-k dielectrics. The oxygen vacancy can be passivated by nitrogen, which suppresses further oxygen diffusion and the formation of the oxygen vacancies. The in-situ NH3 plasma treatment is useful for high performance MOS devices with good reliability.
High-k gated MOSFETs with Cl2 and CF4 plasma treatments are studied in this thesis. A higher-k HfON with more tetragonal phase is formed by the halogen plasma treatment on interfacial layer (IL). A low inversion equivalent oxide thickness in MOSFET is obtained with the Cl2 plasma treated IL. In addition, high mobility and transconductance, and low subthreshold swing are obtained by the Cl2 plasma treatment, which therefore is a promising interface engineering for advanced MOSFETs.
Ge MOS devices with about 95% Ge4+ in HfGeOx interfacial layer are obtained by H2O plasma process together with in-situ desorption before atomic layer deposition (ALD). The EOT is scaled down to 0.39 nm; the leakage current is decreased as well. The improvement can be attributed to the in-situ Ge sub-oxide desorption process in an ALD chamber at 370 oC. The interface trap density and frequency dispersion need further process development to be reduced.
Electrical characteristics of Ge pMOSFETs with HfO2, ZrO2, ZrO2/HfO2, and HfZrOx gate dielectrics are studied in this thesis. A lower EOT is obtained in ZrO2 device, which however has a higher interface trap density (Dit) due to its inferior dielectric/Ge interface. Interestingly, the Dit and sub-threshold swing of Ge pMOSFETs are clearly reduced by ZrO2/HfO2 stack gate dielectric. A peak hole mobility of 335 cm2/V-sec is achieved in ZrO2/HfO2 device thanks to good dielectric/Ge interface. Furthermore, the EOT of ZrO2/HfO2 device is 0.62 nm, and the leakage current is 2x10-3 A/cm2. Therefore, a ZrO2/HfO2 stack gate dielectric is promising for Ge MOSFETs.
[1] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles: McGraw-Hill Education, 2012.
[2] "The International Technology Roadmap for Semiconductors (ITRS), System Drivers, 2011, http://www.itrs.net."
[3] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, C. Wenger, et al., "Optical properties and band gap characterization of high dielectric constant oxides," Thin Solid Films, vol. 520, pp. 4532-4535, 2012.
[4] T. V. Perevalov, M. V. Ivanov, and V. A. Gritsenko, "Electronic and optical properties of hafnia polymorphs," Microelectronic Engineering, vol. 88, pp. 1475-1477, 2011.
[5] D. Shin, R. Arróyave, and Z. K. Liu, "Thermodynamic modeling of the Hf–Si–O system," Calphad, vol. 30, pp. 375-386, 2006.
[6] D. Fischer and A. Kersch, "The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles," Applied Physics Letters, vol. 92, p. 012908, 2008.
[7] J. Huang, D. Heh, P. Sivasubramani, P. D. Kirsch, G. Bersuker, D. C. Gilmer, et al., "Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT=0.59nm for 16nm application," in VLSI Technology, 2009, pp. 34-35.
[8] M. Suzuki, M. Tomita, T. Yamaguchi, and N. Fukushima, "Ultra-thin (EOT=3 A) and low leakage dielectrics of La-alminate directly on si substrate fabricated by high temperature deposition," in IEDM Technical Digest., 2005, pp. 433-436.
[9] J. G. Yun, S. Y. Oh, B. F. Huang, H. H. Ji, Y. G. Kim, S. H. Park, et al., "Highly thermal robust NiSi for nanoscale MOSFETs utilizing a novel hydrogen plasma immersion ion implantation and Ni-Co-TiN tri-layer," Electron Device Letters, vol. 26, pp. 90-92, 2005.
[10] M. Kondo and H. Tanimoto, "An accurate Coulomb mobility model for MOS inversion layer and its application to NO-oxynitride devices," IEEE Transactions on Electron Devices, vol. 48, pp. 265-270, 2001.
[11] S. M. Sze, Semiconductor Devices: Physics and Technology: John Wiley & Sons Singapore Pte. Limited, 2012.
[12] C. H. Fu, K. S. Chang-Liao, K. H. Tsai, T. K. Wang, and Y. J. Lee, "Effects of Ge content in SiGe channel on electrical characteristics of high-k gated MOS device," Solid-State Electronics, vol. 53, pp. 888-891, 8/2009.
[13] D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. A. Pianetta, H. S. P. Wong, et al., "Experimental demonstration of high mobility Ge NMOS," in IEDM, 2009, pp. 1-4.
[14] R. Zhang, N. Taoka, H. Po-Chin, M. Takenaka, and S. Takagi, "1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation," in IEDM, 2011, pp. 28.3.1-28.3.4.
[15] C. H. Fu, K. S. Chang-Liao, L. J. Liu, H. C. Hsieh, C. C. Lu, C. C. Li, et al., "Enhanced Hole Mobility and Low Tinv for pMOSFET by a Novel Epitaxial Si/Ge Superlattice Channel," Electron Device Letters, vol. 33, pp. 188-190, 2012.
[16] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation," Applied Physics Letters, vol. 98, 2011.
[17] F. Ji, J. P. Xu, P. T. Lai, C. X. Li, and J. G. Liu, "Improved Interfacial Properties of Ge MOS Capacitor With High-k Dielectric by Using TaON/GeON Dual Interlayer," Electron Device Letters, vol. 32, pp. 122-124, 2011.
[18] M. Shahinur Rahman, E. K. Evangelou, N. Konofaos, and A. Dimoulas, "Gate stack dielectric degradation of rare-earth oxides grown on high mobility Ge substrates," Journal of Applied Physics, vol. 112, p. 094501, 2012.
[19] A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, et al., "Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide," Applied Physics Letters, vol. 91, p. 082904, 2007.
[20] K. Kita, S. K. Wang, M. Yoshida, C. H. Lee, K. Nagashio, T. Nishimura, et al., "Comprehensive study of GeO2 oxidation, GeO desorption and GeO2-metal interaction -understanding of Ge processing kinetics for perfect interface control," in IEDM, 2009, pp. 1-4.
[21] B. Onsia, T. Conard, S. D. Gendt, M. M. Heyns, I. Hoflijk, P. W. Mertens, et al., "A Study of the Influence of Typical Wet Chemical Treatments on the Germanium Wafer Surface," Solid State Phenomena, vol. 103-104, pp. 27-30, 2005.
[22] C. Chi On, F. Ito, and K. C. Saraswat, "Nanoscale germanium MOS Dielectrics-part I: germanium oxynitrides," IEEE Transactions on Electron Devices, vol. 53, pp. 1501-1508, 2006.
[23] L. J. Liu, K. S. Chang-Liao, C. H. Fu, T. C. Chen, J. W. Cheng, C. C. Li, et al., "Ultralow EOT and high mobility Ge pMOSFETs with in-situ H2O plasma grown GeO2 and HfON gate dielectric," in VLSI-TSA, 2013, pp. 1-2.
[24] E. de Hoffmann and V. Stroobant, Mass Spectrometry: Principles and Applications: Wiley, 2007.
[25] S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide: Springer Berlin Heidelberg, 2012.
[26] V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition: Springer US, 2008.
[27] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science: Springer US, 2013.
[28] J. Zhao and N. U. Chemistry, Resonant Localized Surface Plasmon Resonance Spectroscopy: Fundamentals and Applications: Northwestern University, 2008.
[29] J. R. Hauser, "A new and improved physics-based model for MOS transistors," IEEE Transactions on Electron Devices, vol. 52, pp. 2640-2647, 2005.
[30] P. Samanta, C. L. Cheng, and Y. J. Lee, "Charge Trapping Related Degradation of Thin HfAlO ∕ SiO2 Gate Dielectric Stack during Constant-Voltage Stress," Journal of The Electrochemical Society, vol. 156, pp. H661-H668, 2009.
[31] C. L. Cheng, H. Jeng-Haur, and W. Yu-Zhen, "Electrical and Reliability Characteristics of HfLaTiO-Gated Metal Oxide Semiconductor Capacitors With Various Ti Concentrations," IEEE Transactions on Device and Materials Reliability, vol. 12, pp. 399-405, 2012.
[32] S. B. F. Sicre and M. M. De Souza, "Dit Extraction From Conductance-Frequency Measurements using a Transmission-Line Model in Weak Inversion of poly/TiN/HfO2 nMOSFETs," IEEE Transactions on Electron Devices, vol. 59, pp. 827-834, 2012.
[33] J. A. Rothschild, H. Avraham, E. Lipp, and M. Eizenberg, "Tunneling of holes observed at work function measurements of metal/HfO2/SiO2/n-Si gate stacks," Applied Physics Letters, vol. 96, p. 122102, 2010.
[34] J. H. Stathis and D. J. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," in IEDM Technical Digest., 1998, pp. 167-170.
[35] J. Huang, P. D. Kirsch, J. Oh, S. H. Lee, J. Price, P. Majhi, et al., "Mechanisms limiting EOT scaling and gate leakage currents of high-k/metal gate stacks directly on SiGe and a method to enable sub-1nm EOT," in VLSI Technology, 2008, pp. 82-83.
[36] C. H. Fu, K. S. Chang-Liao, L. W. Du, T. K. Wang, W. F. Tsai, and C. F. Ai, "Electrical characteristics of SiGe channel MOS devices with high-k/metal gate incorporated with nitrogen by plasma immersion ion implantation," Solid-State Electronics, vol. 54, pp. 1094-1097, 2010.
[37] N. Lu, H. J. Li, M. Gardner, and D. L. Kwong, "Higher k HfTaTiO gate dielectric with improved material and electrical characteristics," in DRC, 2005, pp. 221-222.
[38] C. H. Fu, K. S. Chang-Liao, Y. A. Chang, Y. Y. Hsu, T. H. Tzeng, T. K. Wang, et al., "A low gate leakage current and small equivalent oxide thickness MOSFET with Ti/HfO2 high-k gate dielectric," Microelectronic Engineering, vol. 88, pp. 1309-1311, 2011.
[39] S. Mahapatra, D. Saha, D. Varghese, and P. B. Kumar, "On the generation and recovery of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress," IEEE Transactions on Electron Devices, vol. 53, pp. 1583-1592, 2006.
[40] C. D. Young, D. Heh, S. V. Nadkarni, C. Rino, J. J. Peterson, J. Barnett, et al., "Electron trap generation in high-k gate stacks by constant voltage stress," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 123-131, 2006.
[41] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee, "Three hot-carrier degradation mechanisms in deep-submicron PMOSFET's," IEEE Transactions on Electron Devices, vol. 42, pp. 109-115, 1995.
[42] B. Laikhtman and P. M. Solomon, "Remote phonon scattering in field-effect transistors with a high kappa insulating layer," Journal of Applied Physics, vol. 103, pp. 014501-16, 2008.
[43] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, "MOS characteristics of ultrathin CVD HfAlO gate dielectrics," Electron Device Letters, IEEE, vol. 24, pp. 556-558, 2003.
[44] C. D. Young, D. Heh, S. Nadkarni, R. Choi, J. J. Peterson, H. R. Harris, et al., "Detection of trap generation in high-k gate stacks," in Integrated Reliability Workshop Final Report, 2005, pp. 5.
[45] S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, et al., "Design and demonstration of very high-k HfO2 for ultra-scaled Si CMOS," in VLSI Technology, 2008, pp. 152-153.
[46] G. Pant, A. Gnade, M. J. Kim, R. M. Wallace, B. E. Gnade, M. A. Quevedo-Lopez, et al., "Comparison of electrical and chemical characteristics of ultrathin HfON versus HfSiON dielectrics," Applied Physics Letters, vol. 89, p. 032904, 2006.
[47] X. Garros, M. Casse, G. Reimbold, F. Martin, C. Leroux, A. Fanton, et al., "Guidelines to improve mobility performances and BTI reliability of advanced high-k/metal gate stacks," in VLSI Technology, 2008, pp. 68-69.
[48] J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements," AIP Conference Proceedings, vol. 449, pp. 235-239, 1998.
[49] D. Ishikawa, S. Kamiyama, E. Kurosawa, T. Aoyama, and Y. Nara, "Extended Scalability of HfON/SiON Gate Stack Down to 0.57 nm Equivalent Oxide Thickness with High Carrier Mobility by Post-Deposition Annealing," Japanese Journal of Applied Physics, vol. 48, p. 04C004, 2009.
[50] M. Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, et al., "Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition," Journal of Applied Physics, vol. 93, pp. 1477-1481, 2003.
[51] R. R. Manory, T. Mori, I. Shimizu, S. Miyake, and G. Kimmel, "Growth and structure control of HfO2 films with cubic and tetragonal structures obtained by ion beam assisted deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, pp. 549-554, 2002.
[52] T. Ino, Y. Kamimuta, M. Suzuki, M. Koyama, and A. Nishiyama, "Dielectric Constant Behavior of HfON," Japanese Journal of Applied Physics, vol. 45, p. 2908, 2006.
[53] K. Xiong, J. Robertson, and S. J. Clark, "Passivation of oxygen vacancy states in HfO2 by nitrogen," Journal of Applied Physics, vol. 99, pp. 044105-4, 2006.
[54] P. J. v. d. Oever, J. H. v. Helden, J. L. v. Hemmen, R. Engeln, D. C. Schram, M. C. M. v. d. Sanden, et al., "N, NH, and NH2 radical densities in a remote Ar-NH3-SiH4 plasma and their role in silicon nitride deposition," Journal of Applied Physics, vol. 100, p. 093303, 2006.
[55] P. E. Nicollian, A. T. Krishnan, C. Bowen, S. Chakravarthi, C. A. Chancellor, and R. B. Khamankar, "The roles of hydrogen and holes in trap generation and breakdown in ultra-thin SiON dielectrics," in IEDM Technical Digest., 2005, pp. 392-395.
[56] K. Choi, H. Jagannathan, C. Choi, L. Edge, T. Ando, M. Frank, et al., "Extremely scaled gate-first high-k/metal gate stack with EOT of 0.55 nm using novel interfacial layer scavenging techniques for 22nm technology node and beyond," in VLSI Technology, 2009, pp. 138-139.
[57] K. C. Sahoo and A. S. Oates, "Dielectric Breakdown of Al2O3/HfO2 Bi-Layer Gate Dielectric," IEEE Transactions on Device and Materials Reliability, vol. 14, pp. 327-332, 2014.
[58] H. K. Kim, H. S. Jung, J. H. Jang, J. Park, T. J. Park, S. H. Lee, et al., "Dependence of optimized annealing temperature for tetragonal phase formation on the Si concentration of atomic-layer-deposited Hf-silicate film," Journal of Applied Physics, vol. 110, 2011.
[59] W. C. Wu, C. S. Lai, H. H. Chiu, J. C. Wang, P. C. Chou, T. S. Chao, "Fluorinated CMOS HfO2 for high performance (HP) and low stand-by power (LSTP) application by pre- and post-CF4 plasma passivation," in ESSDERC, 2010, pp. 416-419.
[60] M. Kalisz, R. Mroczynski, and R. B. Beck, "Specific features of fluorination of silicon surface region by RIE in r.f. CF4 plasma; novel method of improving electrical properties of thin PECVD silicon dioxide films," in ULIS, 2011, pp. 1-4.
[61] J. Y. Kim, M. K. Kwon, VJ Logeeswaran, G. Sonia, Islam M.S., "Postgrowth In Situ Chlorine Passivation for Suppressing Surface-Dominant Transport in Silicon Nanowire Devices," IEEE Transactions on Nanotechnology, vol. 11, pp. 782-787, 2012.
[62] W. C. Wu, C. S. Lai, S. C. Lee, M. W. Ma, T. S. Chao, J. C. Wang, et al., "Fluorinated HfO2 gate dielectrics engineering for CMOS by pre- and post-CF4 plasma passivation," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[63] C. H. Fu, K. S. Chang-Liao, C. C. Li, Z. H. Ye, F. M. Hsu, T. K. Wang, et al., "A higher-k tetragonal HfO2 formed by chlorine plasma treatment at interfacial layer for metal-oxide-semiconductor devices," Applied Physics Letters, vol. 101, pp. 032105-4, 2012.
[64] W. K. Chim, J. X. Zheng, and B. H. Koh, "Modeling of charge quantization and wave function penetration effects in a metal–oxide–semiconductor system with ultrathin gate oxide," Journal of Applied Physics, vol. 94, pp. 5273-5277, 2003.
[65] G. Mavrou, P. Tsipas, A. Sotiropoulos, S. Galata, Y. Panayiotatos, A. Dimoulas, et al., "Very high-kappa ZrO2 with La2O3 (LaGeOx) passivating interfacial layers on germanium substrates," Applied Physics Letters, vol. 93, p. 212904, 2008.
[66] L. Lamagna, C. Wiemer, S. Baldovino, A. Molle, M. Perego, S. Schamm-Chardon, et al., "Thermally induced permittivity enhancement in La-doped ZrO2 grown by atomic layer deposition on Ge(100)," Applied Physics Letters, vol. 95, p. 122902, 2009.
[67] Y. S. Choi, T. Nishida, and S. E. Thompson, "Impact of mechanical stress on direct and trap-assisted gate leakage currents in p-type silicon metal-oxide-semiconductor capacitors," Applied Physics Letters, vol. 92, 2008.
[68] P. E. Nicollian, A. T. Krishnan, and V. K. Reddy, "Two-trap model for low voltage stress-induced leakage current in ultrathin SiON dielectrics," Journal of Applied Physics, vol. 104, 2008.
[69] K. Ishikawa, M. Okigawa, Y. Ishikawa, S. Samukawa, and S. Yamasaki, "In vacuo measurements of dangling bonds created during Ar-diluted fluorocarbon plasma etching of silicon dioxide films," Applied Physics Letters, vol. 86, 2005.
[70] S. Govindarajan, T. S. Boscke, P. D. Kirsch, M. A. Quevedo-Lopez, P. Sivasubramani, S. C. Song, et al., "Higher Permittivity Rare Earth-Doped HfO2 and ZrO2 Dielectrics for Logic and Memory Applications," in VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, 2007, pp. 1-2.
[71] H. Yandong, Z. Mingzhen, and T. Chuanghua, "Study on near-flatband-voltage SILC in ultra-thin plasma nitrided gate oxides," in 7th ICSICT, 2004, vol.2, pp. 804-807.
[72] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, "Record-high electron mobility in Ge n-MOSFETs exceeding Si universality," in IEDM, 2009, pp. 1-4.
[73] H. Watanabe, K. Kutsuki, I. Hideshima, G. Okamoto, T. Hosoi, and T. Shimura, "High-quality GeON gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge(100)," in 10th ICSICT, 2010, pp. 867-870.
[74] R. Zhang, P. C. Huang, N. Taoka, M. Takenaka, and S. Takagi, "High mobility Ge pMOSFETs with 0.7 nm ultrathin EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation," in VLSI Technology, 2012, pp. 161-162.
[75] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation," IEEE Transactions on Electron Devices, vol. 59, pp. 335-341, 2012.
[76] R. Zhang, P. C. Huang, J. C. Lin, M. Takenaka, and S. Takagi, "Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures," Applied Physics Letters, vol. 102, p. 081603, 2013.
[77] J. F. Binder, P. Broqvist, H.-P. Komsa, and A. Pasquarello, "Germanium core-level shifts at Ge/GeO2 interfaces through hybrid functionals," Physical Review B, vol. 85, p. 245305, 2012.
[78] P. Broqvist, J. F. Binder, and A. Pasquarello, "Band offsets at the Ge/GeO2 interface through hybrid density functionals," Applied Physics Letters, vol. 94, 2009.
[79] X. F. Li, X. J. Liu, W. Q. Zhang, Y. Y. Fu, A. D. Li, H. Li, et al., "Comparison of the interfacial and electrical properties of HfAlO films on Ge with S and GeO2 passivation," Applied Physics Letters, vol. 98, p. 162903, 2011.
[80] V. V. Afanas’ev, A. Stesmans, A. Delabie, F. Bellenger, M. Houssa, and M. Meuris, "Electronic structure of GeO2-passivated interfaces of (100)Ge with Al2O3 and HfO2," Applied Physics Letters, vol. 92, 2008.
[81] E. H. Nicollian and J. R. Brews, "MOS (Metal Oxide Semiconductor) Physics and Technology," Wiley, 1982.
[82] C. C. Li, K. S. Chang-Liao, L. J. Liu, T. M. Lee, C. H. Fu, T. C. Chen, et al., "Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption," Electron Device Letters, IEEE, vol. 35, pp. 509-511, 2014.
[83] L. Ragnarsson, C. Adelmann, Y. Higuchi, K. Opsomer, A. Veloso, C. Soon Aik, et al., "Implementing cubic-phase HfO2 with low-VT replacement gate pMOS devices for improved EOT-Scaling and reliability," in VLSI Technology, 2012, pp. 27-28.
[84] V. V. Afanas’ev, H. Y. Chou, M. Houssa, A. Stesmans, L. Lamagna, A. Lamperti, et al., "Transitivity of band offsets between semiconductor heterojunctions and oxide insulators," Applied Physics Letters, vol. 99, p. 172101, 2011.
[85] M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, et al., "Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2," Applied Physics Letters, vol. 80, pp. 1897-1899, 2002.
[86] X. F. Li, Y. Q. Cao, A.-D. Li, H. Li, and D. Wu, "HfO2/Al2O3/Ge Gate Stacks with Small Capacitance Equivalent Thickness and Low Interface State Density," ECS Solid State Letters, vol. 1, pp. N10-N12, January 1, 2012.
[87] C. Mahata, M. K. Bera, P. K. Bose, and C. K. Maiti, "Paramagnetic defects and charge trapping behavior of ZrO 2 films deposited on germanium by plasma-enhanced CVD," Semiconductor Science and Technology, vol. 24, p. 025026, 2009.
[88] S. Bhattacharya, J. McCarthy, B. M. Armstrong, H. S. Gamble, G. K. Dalapati, S. Das, et al., "Electrical properties of high-k ZrO2 gate dielectrics on strained Ge-rich layers," in ICMEL, 2004, vol. 1, pp. 405-407.
[89] M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, "Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation," Applied Physics Letters, vol. 77, pp. 1885-1887, 2000.
[90] H. S. Jung, S. A. Lee, S. H. Rha, S.Y. Lee, H.K. Kim, D. H. Kim, et al., "Impacts of Zr Composition in Hf1-xZrxOy Gate Dielectrics on Their Crystallization Behavior and Bias-Temperature-Instability Characteristics," IEEE Transactions on Electron Devices, vol. 58, pp. 2094-2103, 2011.
[91] D. H. Triyoso, R. I. Hegde, J. Jiang, J. K. Schaeffer, and M. V. Raymond, "Improved Electrical Properties of ALD HfZrO2 Dielectrics Deposited on Ultrathin PVD Zr Underlayer," Electron Device Letters, vol. 29, pp. 57-59, 2008.
[92] C. Moonju, B. Kaczer, T. Kauerauf, L. A. Ragnarsson, and G. Groeseneken, "Improved NBTI reliability with sub-1-nanometer EOT ZrO2 gate dielectric compared with HfO2," Electron Device Letters, vol. 34, pp. 593-595, 2013.
[93] C. C. Lu, K. S. Chang-Liao, C. H. Tsao, T. K. Wang, H. C. Ko, Y. T. Hsu, "Profiling of Channel-Hot-Carrier Stress-Induced Trap Distributions Along Channel and Gate Dielectric in High-k Gated MOSFETs by a Modified Charge Pumping Technique," IEEE Transactions on Electron Devices, vol. 61, pp. 936-942, 2014.
[94] C. Y. Lu, K. S. Chang-Liao, P. H. Tsai, T. K. Wang, "Depth Profiling of Border Traps in MOSFET With High-k Gate Dielectric by Charge-Pumping Technique," Electron Device Letters, vol. 27, pp. 859-862, 2006.
[95] Y. Kuo, J. Lu, J. Yan, T. Yuan, H. C. Kim, J. Peterson, et al., "Sub 2 nm Thick Zirconium Doped Hafnium Oxide High-K Gate Dielectrics," ECS Transactions, vol. 1, pp. 447-454, July 7, 2006.
[96] S. Chatterjee and Y. Kuo, "Effects of interfacial charges on doped and undoped HfOx stack layer with TiN metal gate electrode for nano-scaled CMOS generation," Journal of Nano- and Electronic Physics, vol. 3, pp. 162-169, 2011.
[97] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, "Hafnium zirconate gate dielectric for advanced gate stack applications," Journal of Applied Physics, vol. 101, p. 074113, 2007.
[98] M. N. U. Bhuyian, S. Poddar, D. Misra, K. Tapily, R. D. Clark, S. Consiglio, et al., "Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks," Applied Physics Letters, vol. 106, p. 193508, 2015.
[99] T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, "Increasing permittivity in HfZrO thin films by surface manipulation," Applied Physics Letters, vol. 95, p. 052904, 2009.
[100] H. S. Jung, T. J. Park, J. H. Kim, S. Y. Lee, J. Lee, H. C. Oh, et al., "Systematic study on bias temperature instability of various high-k gate dielectrics; HfO2, HfZrxOy and ZrO2," in IRPS, 2009, pp. 971-972.
[101] C. C. Lin and Y. Kuo, "Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack," Journal of Applied Physics, vol. 115, p. 084113, 2014.