研究生: |
彭祥灝 Peng, Shiang-Hau |
---|---|
論文名稱: |
以旋塗與奈米壓印製作發光層之有機發光二極體 Organic Light-Emitting Diodes with Spin-Coated and Nano-Imprinted Emissive Layers |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
岑尚仁
陳建志 薛景中 蔡永誠 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 有機發光二極體 、旋塗 、奈米壓印 |
外文關鍵詞: | Organic Light-Emitting Diode, Spin-Coat, Nano-Imprint |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體因可應用於顯示及照明,逐漸受到矚目;為早日應用,製造成本將是首要考量;因此,許多研究紛紛投入研製溼式製程;市場研究機構Nanomarkets預估,2013年溼式製程材料產值為5,000萬美元,2019年將大幅成長至80,000萬美元,再次顯示發展溼式製程的重要;據此,本研究使用兩種不同的溼式製程,製備有機發光二極體的發光層。
第一部分,我們利用旋塗製程,製備藍光及綠光有機發光二極體;其中,新穎綠磷光材料bis[5-methyl-8-trifluoromethyl-5H-benzo(c)(1,5) naphthyridin-6-one]iridium(picolinate) (3-CF3BNO),具有短激態生命期(0.39 μs)及相對高量子產率(72%),與適當的主體搭配,當亮度在100及1,000 cd/m2時,效率分別為52及61 lm/W、外部量子效率為18%及23%,為目前綠光元件在濕式製程中的能量效率世界記錄。
第二部分,為克服小分子型材料不易轉印,我們研發一小分子及高分子型混合式主體方法,成功將發光層轉印至元件上,製備藍、綠、紅及白光有機發光二極體,所得的元件最大亮度分別為29,000、29,000、4,000及18,000 cd/m2;能成功轉印可歸因於混合式主體可提供高分子型主體好的成膜特性,亦具備小分子型主體好的電致發光特性。
Organic light-emitting diodes (OLEDs) are attracting increasing interest owing to their promising applications in flat panel displays and solid-state lighting. To make it applicable soon, manufacturing cost is the top priority to be considered. Therefore, this can explain why numerous researches have been paid much effort on design and fabrication of solution process. Nanomarkets estimates that the output value of solution-processable materials is 50 million US dollars in 2013, and will markedly increase to 800 million in 2019, again indicating that the importance of development of solution process. In this report, two different solution processes are employed to fabricate the emissive layers in OLED devices.
In the first part, blue and green OLEDs are fabricated via solution process by using a novel phosphorescent material, bis[5-methyl-8-trifluoromethyl-5H-benzo(c) (1,5) naphthyridin-6-one] iridium(picolinate) (3-CF3BNO), which has a short excited-state lifetime (0.39 μs) and a relatively high quantum yield (72 %). Coupled with an appropriate host material, the resultant green OLED shows an efficacy of 52 and 61 lm/W and external quantum efficiency of 18 and 23 % at 100 and 1,000 cd/m2, the highest among all reported solution-processed green OLEDs.
In the second part, to overcome the disadvantage of molecular material that is not easy to be used in contact-printing, a method of blending with molecular and polymer host is designed and fabricated to contact-print the emissive layer onto the OLED devices successfully. By using this method, the maximum luminance of fabricated blue, green, red, and white OLEDs is 29,000, 29,000, 4,000, and 18,000 cd/m2, respectively. That contact-printing can be achieved successfully may be attributed to the blended host, which is composed of a polymer host with a good film integrity and a molecular host with a fine electroluminescence character.
1. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 1990, 347, 539.
3. Prache, Displays, 2001, 22, 49.
4. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 1997, 22, 172.
5. J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lett., 2004, 85, 3450.
6. R. F. Service, Science, 2005, 310, 1762.
7. Y. Sun , N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature, 2006, 440, 908.
8. A. Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 50, 64 (1953).
9. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
10. W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
11. W. Helfrich, W. G. Schneider, J. Chem. Phys. 44, 2902 (1966).
12. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films, 94, 171 (1982).
13. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
14. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Patent 1988, No. 4,720,432.
15. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
16. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990)
17. R. H. Friend, J. H. Burroughs, and D. D. C. Bradley, US. Patent 1993, No. 5,247,190.
18. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, 713 (1988).
19. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 178, 488 (1991).
20. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
21. J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
22. J. Shi, C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
23. G. E. Jebbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
24. J. Kido, T. Mazukami, US. Patent 2000, No. 6,013,384.
25. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Slbley, M. E. Thompson, S. R. Forrest, Nature 195, 151 (1998).
26. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75, 1 (1999)
27. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 80, 1 (2002)
28. Y. Sun, N. C. Giebink, H. Kanno, B Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 04645 (2006).
29. Y. Shao, Y. Yang, Appl. Phys. Lett. 86, 073510 (2005)
30. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Appl. Phys. Lett. 88, 193501 (2006)
31. Y. Sun and S. R. Forrest, Nat. Photonics 2 (8), 483-487 (2008).
32. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 459 (7244), 234-U116 (2009).
33. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu, Nature Photonics, 5, 753-757, (2011).
34. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234-238, (2012).
35. Dodabalapur, Bell Lab. Solid State Com. 102, 259 (1997).
36. W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
37. U. Wolf, V. I. Arkhipov, H. Bässler, Phys. Rev. B, 59, 7507 (1999).
38. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
39. P. N. Murgatroyd, J. Phys. D, 3, 151 (1970).
40. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1 (1997).
41. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 83, 4928 (1998).
42. T. Förster, Ann. Phys. 6, 55 (1948).
43. L. Dexter, J. Chem. Phys. 21, 836 (1953).
44. 陳金鑫, 黃孝文, OLED有機電激發光材料與元件 (2005)
45. M. Klessonger, J. Michl, ”Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995)
46. M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87, 1165 (2000).
47. J. S. Kim, M. Granström, R. H. Frienf, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F Cacialli, J. Appl. Phys. 84, 6859 (1998).
48. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
49. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 86, 1688 (1999).
50. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017 (1998).
51. S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Patent 1991, No. 5,061,569.
52. C. Hosokawa, H. Higashi, T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
53. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
54. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, S. Yi, Adv. Mater. 7, 551 (1995).
55. C. Adachi, T. Tsutsui, S. Satio, Appl. Phys. Lett. 56, 799 (1990).
56. J. Shi, C. W. Tang, C. H. Chen, US. Patent 1997, No. 5,646,948.
57. T. Wakimoto, Y. Fukuda, K, Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Device, 44, 1245 (1997).
58. C Ganzorig, K Suga, M. Fujihira, Mater. Sci. Eng. B 85, 140 (2001).
59. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, J. Appl. Phys. 93, 6159 (2003)
60. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl. Phys. Lett. 84, 2324 (1998).
61. T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett. 73, 2763 (1998).
62. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stoβel, J. Appl. Phys. 89, 420 (2001)
63. L. S. Hung, and C. W. Tang, US. Patent 1997, No. 5,677,572.
64. M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Patent 2000, No. 6,097,147.
65. Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
66. C. J. Chang, C.H. Yang, K. Chen, Y. Chi, C. F. Shu, N. L. Ho, Y. S. Yeh, P. T. Chou, Dalton Trans. 1881, (2007).
67. W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Tao, S. S. Sun, Y. S. Wen, Chem. Mater. 16, 2480, (2004).
68. J. H. Jou, C. C. Chen, Y. C. Chung, M. F. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang, J. J. Shyue, Adv. Funct. Mater. 18, 121, (2008).
69. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, C. Chang, Appl. Phys. Lett. 92, 223504. (2008).
70. S. Watanabe, N. Ide, J. Kido, Jpn. J. Appl. Phys. 46, 3A 1186, (2007).
71. D. Tanaka, H. Sasabe, Y. J. Li, S. S. Su, T. Takeda, J. Kido, Jpn. J. Appl. Phys. 46, 1, L10. (2007).
72. S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel, Adv. Mater. 14, 975, (2002)
73. X. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 18, 948 (2006).
74. N. Rehmann, D. Hertel, K. Meerholz, H. Becker, S. Heun, Appl. Phys. Lett. 91, 103507, (2007).
75. A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 63, 2002, (1993).
76. Y. N. Xia and G. M. Whitesides, J. Am. Chem. Soc. 117, 3274, (1995).
77. L. Deng, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc. 118, 5136, (1996).
78. C. Xu, P. Taylor, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, J. Mater. Chem. 13, 3044, (2003).
79. S. A. Lange, V. Benes, D. P. Kern, J. K. H. Horber, and A. Bernard, Anal. Chem. 76, 1641, (2004).
80. K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, Biomaterials 25, 1851, (2004).
81. S. H. Hur, D. Y. Khang, C. Kocabas, and J. A. Rogers, Appl. Phys. Lett. 85, 5730, (2004).
82. S. M. Huang, Q. Fu, L. An, and J. Liu, Phys. Chem. Chem. Phys. 6, 1077, (2004).
83. F. Nuesch, Y. Li, and L. J. Rothberg, Appl. Phys. Lett. 75, 1799, (1999).
84. Y. Koide, Q. Wang, J. Cui, D. D. Benson, and T. J. Marks, J. Am. Chem. Soc. 122, 11266, (2000).
85. Y. Koide, M. W. Such, R. Basu, G. Evmenenko, J. Cui, P. Dutta, M. C. Hersam, and T. J. Marks, Langmuir 19, 86, (2003).
86. T. L. Breen, P. M. Fryer, R. W. Nunes, and M. E. Rothwell, Langmuir 18, 194, (2002).
87. T. Granlund, T. Nyberg, L. S. Roman, M. Svensson, and O. Inganas, Adv. Mater. 12, 269, (2000).
88. C. Kim, M. Shtein, and S. R. Forrest, Appl. Phys. Lett. 80, 4051, (2002).
89. C. Kim and S. R. Forrest, Adv. Mater. 15, 541, (2003).
90. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen, H. Y. Chen, Chem. Mater. 21, 2565, (2009).
91. C. W. Joo, K. Yook, S. O. Jeon, J. Y. Lee, Org. Electron. 10, 978, (2009)
92. M. S. Soh, S. A. G. Santamaria, E. L. Williams, M. Perez-Morales, H. J. Bolink, A. Sellinger, J. Polym. Sci. Pol. Phys. 49, 531, (2011)
93. J. J. Park, T. J. Park, W. S. Jeon, R. Pode, J. Jang, J. H. Kwon, E. S. Yu, M. Y. Chae, Org. Electron. 10, 189, (2009)
94. X. Yang, D. C. Muller, D. Neher, K. Meerholz, Adv. Mater. 18, 948, (2006)
95. M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, Adv. Mater. 23, 3590, , (2011)
96. H. Wu, J. Zou, D. An, F. Liu, W. Yang, Y. Peng, A. Mikhailovsky, G. C. Bazan, Y. Cao, Org. Electron. 10, 1562, , (2009)
97. J. T. Rubino and S. H. Yalkowsky, Pharm. Res. 4, 220, (1987).
98. B. M. Hasch, M. A. Meilchen, S. H. Lee, and M. A. McHugh, J. Polym. Sci. Part B-Polym. Phys. 31, 429, (1993).
99. B. Ray and B. M. Mandal, Langmuir 13, 2191, (1997).
100. G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck, and G. M. Whitesides, Macromolecules 26, 5870, (1993).
101. H. Hillborg and U. W. Gedde, Polymer 39, 1991, (1998).
102. M. J. Owen and P. J.Smith, J. Adhesion Sci. Technol. 8, 1063, (1994).
103. P. Kopola, M. Tuomikoski, R. Suhonen and A. Maaninen, Thin Solid Films 517, 5757, (2009).
104. W. C. Lin, Y. C. Lin, W. B. Wang, B. Y. Yu, S. Iida, M. Tozu, M. F. Hsu, J. H. Jou, and J. J. Shyue, Org. Electron. 10, 459, (2009).