研究生: |
李東璋 Li, Tung-Chang |
---|---|
論文名稱: |
在三個非重複字串上的最長共同子字串 Longest common substring on non repetitive three strings |
指導教授: |
林瀚仚
Lin, Han-Hsuan |
口試委員: |
韓永楷
Hon, Wing-Kai 賴青沂 Lai, Ching-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 量子演算法 、字串 、最長公共子字串 、非重複 |
外文關鍵詞: | string, non-repetitive |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
字串演算法是一個重要的研究領域,可應用於許多領域。 在此背景下,我們深入研究了在三個字串中尋找最長公共子字串的問題,這個問題可以用基於後綴樹的經典演算法在線性時間內完成。在本文中,我們提出可以在tilde{O}(n^{5/6})時間內完成三個字串的量子版本的最長公共子字串。
String algorithms are an important area of research and can be applied in many fields. In this context, we delve into the issue of finding the longest common substring among three strings, which can be accomplished in linear time using a classical algorithm based on suffix trees. In this work we propose that the longest common substring of the quantum version of the three strings can be solved in tilde{O}(n^{5/6}) time.
[1] Shyan Akmal and Ce Jin. Near-optimal quantum algorithms for string problems. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2791–2832. SIAM, 2022.
[2] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing, 37(1):210–239, 2007.
[3] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.
[4] Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science & Business Media, 2011.
[5] Andrew M Childs, Stacey Jeffery, Robin Kothari, and Fr´ed´eric Magniez. A time-efficient quantum walk for 3-distinctness using nested updates. arXiv preprint arXiv:1302.7316, 2013.
[6] Heting Chu and Marilyn Rosenthal. Search engines for the world wide web: A comparative study and evaluation methodology. In Proceedings of the Annual Meeting-American Society for Information Science, volume 33, pages 127–135, 1996.
[7] John L Donaldson, Ann-Marie Lancaster, and Paula H Sposato. A plagiarism detection system. In Proceedings of the twelfth SIGCSE technical symposium on Computer science education, pages 21–25, 1981.
[8] Fran¸cois Le Gall and Saeed Seddighin. Quantum meets fine-grained complexity: Sublinear time quantum algorithms for string problems. arXiv preprint arXiv:2010.12122, 2020.
[9] Hugh G Griffin and Annette M Griffin. Dna sequencing. Applied biochemistry and biotechnology, 38(1):147–159, 1993.
[10] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.
[11] Dan Gusfield. Algorithms on stings, trees, and sequences: Computer science and computational biology. Acm Sigact News, 28(4):41–60, 1997.
[12] Ramesh Hariharan. Chernoff bounds for binomial and hypergeometric distributions. https://www.hariharan-ramesh.com/ppts/chernoff.pdf, 2012.
[13] Dominik Kempa and Tomasz Kociumaka. String synchronizing sets:
sublinear-time bwt construction and optimal lce data structure. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 756–767, 2019.
[14] Fr´ed´eric Magniez, Ashwin Nayak, J´er´emie Roland, and Miklos Santha. Search via quantum walk. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 575–584, 2007.
[15] Hariharan Ramesh and V Vinay. String matching in o (n+ m) quantum time. Journal of Discrete Algorithms, 1(1):103–110, 2003.