簡易檢索 / 詳目顯示

研究生: 劉玟君
Liu, Wen-Chun
論文名稱: Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
流感病毒血球凝集素與樹突狀細胞間作用機轉的探討
指導教授: 吳夙欽
Wu, Suh-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 血球凝集素樹突狀細胞
外文關鍵詞: Hemagglutinin, Dendritic cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Influenza virus infection may activate dendritic cells (DCs) and trigger the pro-inflammatory and adaptive immune responses in hosts. In this study, we prepared recombinant hemagglutin (HA) proteins of mouse-adapted H1N1 (WSN), swine-origin 2009 pandemic H1N1 (Texas), and high-pathogenic avian influenza H5N1 (KAN-1) viruses using baculovirus/insect cell expression system and purified through Ni-NTA resin chromatography. These purified H1 and H5 HA proteins were treated with mouse bone marrow-derived dendritic cells (BMDCs) and measured for cytokine production using FACS analysis and ELISA. Our results showed that TNF-□ and IL-12 p70 production by DCs treated with H1 or H5 HA proteins were all increased dose-dependently. However, no significant differences were found in the cytokine production between the treatments of H1 and H5 HA proteins. Proteinase K treatment of H1 and H5 HA proteins demonstrated the increase of TNF-□ production in DCs was due to the HA protein stimulation. Higher levels of CD40 and CD86 expression as well as the reduce of endocytosis capability were also observed on H1 and H5 HA-treated DCs, suggesting the DCs were activated and maturated through H1 and H5 HA proteins stimulation. In addition, the activated pathways by H1 and H5 HA proteins were examined in DCs obtained from TLR4 mutant and MyD88-/- mice. The data showed that DCs can be activated through TLR4-MyD88 dependent pathway. The results implied that HA proteins could promote T-cell differentiation into TH1 cells and trigger CD8+ cytotoxic T lymphocytes activation in adaptive immune responses. These findings provide some clues to understand how the activation and maturation of dendritic cells response to influenza virus infection, which may be applied for new cross-protective vaccine design against influenza virus infection in the future.


    流行性感冒(Influenza)是全球普遍的感染性疾病,每年導致高或低的發病率及致死率,甚至對全球經濟造成衝擊。早期研究指出流感病毒血球凝集素hemagglutinin (HA)被視為調控流行性感冒病毒毒性、致病性的重要標的物;受到流感病毒感染後會刺激促發炎(pro-inflammatory)因子的生成,並進一步活化樹突狀細胞(dendritic cells)和引發後天性(adaptive) 的免疫反應。然而,目前對於血球凝集素如何參與調控流行性感冒及其對免疫反應的影響機制仍不清楚。此篇研究主要是利用桿狀病毒昆蟲表現系統(baculovirus/insect cell expression system)分別產生mouse-adapted H1(WSN)、2009年爆發的豬起源(swine-origin)流行性感冒 H1 (Texas)和禽流感H5(KAN-1)的重組血球凝集素蛋白,並用 Ni-NTA resins將其有效地純化出來並用西方墨點法確認HA特性。接著將這些重組蛋白加入老鼠骨髓來源的樹突狀細胞(bone marrow-derived dendritic cells(BMDCs))中,並利用流式細胞儀(FACS)和酵素結合免疫吸附分析(ELISA)偵測細胞激素TNF-□□和IL-12□p□□的產量。結果顯示此三種不同品系(strains)的流感病毒蛋白HA皆可以促進TNF-□和IL-12p70的生成,活化DCs,但三者之間並無顯著的差異性。另外,利用proteinase K,進一步證明DCs的活化是由於HA蛋白的刺激所致。除此,藉由DCs表面上輔助刺激分子(co-stimulatory molecule) CD40和CD86表現量的提升及其內嗜作用能力(endocytosis capability)降低的結果,可知當DCs被流感病毒HA蛋白刺激後,會活化且進一步成熟,由以上結果推判DCs可完整呈現抗原並進一步活化TH1細胞分化和/或刺激胞殺性T淋巴球(CTL)後天性免疫反應。另外,利用TLR4 mutant和MyD88-/-基因剔除鼠(knock-out mice)進一步證明DCs的活化途徑和TLR4¬-MyD88路徑相關。藉由上述結果可讓我們對於DCs在受流行性感冒病毒感染時,其所參與調控HA的機制更為了解,這些資訊可提供重要的參考依據,對日後高致病性(pathogenicity)或高傳染性(transmission)流行性感冒的疫苗設計或是專一性的藥物標靶治療將有所助益。

    Contents 中文摘要 2 Abstract 4 Acknowledgements 6 Contents 8 1. Introduction 12 1.1 Overview of influenza virus 12 1.2 Hemagglutinin (HA) protein characteristics of influenza 16 1.3 The scheme of dendritic cells 17 1.3.1 Plasmacytoid Dendritic Cells (pDCs) 19 1.3.2 Myeloid Dendritic Cells (mDCs) 20 1.4 Introduction of Toll-Like Receptor (TLR) 20 1.5 Recent discovery regarding modulation between influenza virus and innate immune cells 22 1.6 Study goals of this research 24 2. Material and Methods 26 2.1 Mice Sources 26 2.2 Sf9 (Spodoptera frugiperda) Cell Culture 26 2.3 Bone Marrow-Derived Dendritic Cells (BMDCs) Primary Culture 26 2.4 The Bac-to-Bac® Baculovirus Expression System 27 2.4.1 Generating the Recombinant pFastBac™ vector-selected colonies 27 2.4.2.1 Generating the Recombinant Bacmid 30 2.4.2.2 Amplify the Recombinant Bacmid Clones 31 2.4.2.3 Transient Transfection by Cellfectin 32 2.5 Production and Purification of Recombinant HA Ectodomain Proteins 32 2.5.1 Production of Recombinant HA Ectodomain Proteins 32 2.5.2 Purification of HA Proteins from Supernatants 33 2.5.3 Purification of HA Proteins from Cell Lysates 33 2.6 Western blotting 34 2.6.1 SDS-PAGE Gel Preparation and Electrophoresis 34 2.6.2 Protein Transfer and Immuno-Hybridization 34 2.7 Coomassie Blue Staining 35 2.8 Protein Concentration Detection 35 2.9 Endo H Glycosidase Treatment of Hemagglutinin (HA) 36 2.10 Proteinase K Treatment of Hemagglutinin (HA) 36 2.11 Intracellular Staining 36 2.11.1 Treatment of Purified HA Proteins on BMDCs 36 2.11.2 Collection and Staining Monoclonal Antibody 37 2.11.3 Flow Cytometry Analysis 37 2.12 Surface Marker Staining 38 2.12.1 BMDCs Treated with Purified HA Proteins 38 2.12.2 Collection and Staining Monoclonal Antibodies 38 2.12.3 Flow Cytometry Analysis 39 2.13 Endocytosis Assay 39 2.13.1 Treatment of Purified HA Proteins on BMDCs 39 2.13.2 Collection and Staining Dextran-FITC 40 2.13.3 Flow Cytometry Analysis 40 2.14 ELISA (Enzyme-Linked Immunosorbent Assay) 41 2.14.1 Dose Titration Treatment of Purified HA Proteins on BMDCs 41 2.14.2 Sandwich- ELISA Detection 41 2.15 Statistic Analysis 42 3. Results 43 3.1 Preparation of recombinant H1 and H5 HA proteins using baculovirus-insect cell expression system 43 3.2 TNF-a production in DCs was elevated after H1 and H5 HA proteins stimulus 44 3.3 IL-12 p70 production was increased in DCs treated with H1 or H5 HA proteins 45 3.4 Proteinase K treatment on HA proteins 46 3.5 Promotion of DC maturation by recombinant influenza HA proteins 46 3.6 TNF-a production of DC by HA stimulus depended on TLR4/ MyD88 pathway 48 3.7 Effect of Glycosidase EndoH on HA Proteins to stimulate DCs 49 4. Conclusions and Discussions 51 4.1 Expression system of recombinant HA (rHA) glycoproteins 51 4.2 Comparison the activation effect on DCs between avian H5N1 and human H1N1 HA of influenza viruses 53 4.3 The possible mechanism of T cell activation due to DCs recruitment 54 4.4 The role of TLR in DC activation in response to influenza virus infection 56 4.5 Glycans modification function of influenza virus HA 58 4.6 Concluding remark 61 References 63 Fig.1 Recombinant influenza hemagglutinin (HA) proteins purification 73 Fig.2 TNF-a production of DCs due to H1HA or H5HA proteins stimulus 74 Fig.3 TNF-a generation titration test of DCs after influenza HA treatment 75 Fig.4 IL-12 p70 Activity Detection of DCs by H1(WSN, Texas) or H5 (KAN1) HA proteins stimulation 76 Fig.5 Proteinase K treatment on influenza HA proteins 77 Fig.6 CD40 surface marker on DCs analysis in virtue of HA stimulation 78 Fig.7 CD86 Surface Marker on DCs examination Due to HA Stimulus 79 Fig.8 Endocytosis Capability Detection of DCs after H1HA or H5HA 80 Treatment 80 Fig.9 TNF-□ production analysis of TLR4 mutant or MyD88-/- mice…………….66 Fig.10 Glycosidase EndoH effect on HA proteins to stimulate DCs 82 Figure.11 Glycosylation sites prediction of influenza HA glycoprotein 83 Appendix.1 Modulation mechanism of DCs response to influenza HA stimulation (Conclusion of this study) 84

    1 Salomon, R. and Webster, R. G., The influenza virus enigma. Cell 2009. 136: 402-410.
    2 Horimoto, T. and Kawaoka, Y., Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 2005. 3: 591-600.
    3 Sym, D., Patel, P. N. and El-Chaar, G. M., Seasonal, avian, and novel H1N1 influenza: prevention and treatment modalities. Ann Pharmacother 2009. 43: 2001-2011.
    4 Johnson, N. P. and Mueller, J., Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bull Hist Med 2002. 76: 105-115.
    5 Yamada, S., Suzuki, Y., Suzuki, T., Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y., Muramoto, Y., Ito, M., Kiso, M., Horimoto, T., Shinya, K., Sawada, T., Usui, T., Murata, T., Lin, Y., Hay, A., Haire, L. F., Stevens, D. J., Russell, R. J., Gamblin, S. J., Skehel, J. J. and Kawaoka, Y., Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006. 444: 378-382.
    6 Patel, M., Dennis, A., Flutter, C. and Khan, Z., Pandemic (H1N1) 2009 influenza. Br J Anaesth 2010. 104: 128-142.
    7 Bastien, N., Antonishyn, N. A., Brandt, K., Wong, C. E., Chokani, K., Vegh, N., Horsman, G. B., Tyler, S., Graham, M. R., Plummer, F. A., Levett, P. N. and Li, Y., Human Infection with a Triple-Reassortant Swine Influenza A(H1N1) Virus Containing the Hemagglutinin and Neuraminidase Genes of Seasonal Influenza Virus. J Infect Dis 2010. 201: 1178-1182.
    8 Vaque Rafart, J., Gil Cuesta, J. and Brotons Agullo, M., [Main features of the new influenza virus a pandemic (H1N1)]. Med Clin (Barc) 2009. 133: 513-521.
    9 Peiris, J. S., Tu, W. W. and Yen, H. L., A novel H1N1 virus causes the first pandemic of the 21st century. Eur J Immunol 2009. 39: 2946-2954.
    10 Kobasa, D., Takada, A., Shinya, K., Hatta, M., Halfmann, P., Theriault, S., Suzuki, H., Nishimura, H., Mitamura, K., Sugaya, N., Usui, T., Murata, T., Maeda, Y., Watanabe, S., Suresh, M., Suzuki, T., Suzuki, Y., Feldmann, H. and Kawaoka, Y., Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 2004. 431: 703-707.
    11 Lee, C. W. and Suarez, D. L., Reverse genetics of the avian influenza virus. Methods Mol Biol 2008. 436: 99-111.
    12 Kash, J. C., Basler, C. F., Garcia-Sastre, A., Carter, V., Billharz, R., Swayne, D. E., Przygodzki, R. M., Taubenberger, J. K., Katze, M. G. and Tumpey, T. M., Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol 2004. 78: 9499-9511.
    13 Kash, J. C., Tumpey, T. M., Proll, S. C., Carter, V., Perwitasari, O., Thomas, M. J., Basler, C. F., Palese, P., Taubenberger, J. K., Garcia-Sastre, A., Swayne, D. E. and Katze, M. G., Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 2006. 443: 578-581.
    14 Beigel, J. H., Farrar, J., Han, A. M., Hayden, F. G., Hyer, R., de Jong, M. D., Lochindarat, S., Nguyen, T. K., Nguyen, T. H., Tran, T. H., Nicoll, A., Touch, S. and Yuen, K. Y., Avian influenza A (H5N1) infection in humans. N Engl J Med 2005. 353: 1374-1385.
    15 Perrone, L. A., Plowden, J. K., Garcia-Sastre, A., Katz, J. M. and Tumpey, T. M., H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 2008. 4: e1000115.
    16 Maines, T. R., Szretter, K. J., Perrone, L., Belser, J. A., Bright, R. A., Zeng, H., Tumpey, T. M. and Katz, J. M., Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. Immunol Rev 2008. 225: 68-84.
    17 Steinhauer, D. A., Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999. 258: 1-20.
    18 Chiu, F. F., Venkatesan, N., Wu, C. R., Chou, A. H., Chen, H. W., Lian, S. P., Liu, S. J., Huang, C. C., Lian, W. C., Chong, P. and Leng, C. H., Immunological study of HA1 domain of hemagglutinin of influenza H5N1 virus. Biochem Biophys Res Commun 2009. 383: 27-31.
    19 Skehel, J., An overview of influenza haemagglutinin and neuraminidase. Biologicals 2009. 37: 177-178.
    20 Shen, S., Mahadevappa, G., Oh, H. L., Wee, B. Y., Choi, Y. W., Hwang, L. A., Lim, S. G., Hong, W., Lal, S. K. and Tan, Y. J., Comparing the antibody responses against recombinant hemagglutinin proteins of avian influenza A (H5N1) virus expressed in insect cells and bacteria. J Med Virol 2008. 80: 1972-1983.
    21 Harrison, S. C., Viral membrane fusion. Nat Struct Mol Biol 2008. 15: 690-698.
    22 Reed, M. L., Bridges, O. A., Seiler, P., Kim, J. K., Yen, H. L., Salomon, R., Govorkova, E. A., Webster, R. G. and Russell, C. J., The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J Virol 2010. 84: 1527-1535.
    23 Ito, T., Interspecies transmission and receptor recognition of influenza A viruses. Microbiol Immunol 2000. 44: 423-430.
    24 Maines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M. and Tumpey, T. M., Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 2009. 325: 484-487.
    25 Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A. and Wiley, D. C., Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 1983. 304: 76-78.
    26 Wei, C. J., Xu, L., Kong, W. P., Shi, W., Canis, K., Stevens, J., Yang, Z. Y., Dell, A., Haslam, S. M., Wilson, I. A. and Nabel, G. J., Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol 2008. 82: 6200-6208.
    27 Shen, J., Ma, J. and Wang, Q., Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918. PLoS One 2009. 4: e7789.
    28 Steinman, R. M., Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med 2007. 13: 1155-1159.
    29 Joffre, O., Nolte, M. A., Sporri, R. and Reis e Sousa, C., Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 2009. 227: 234-247.
    30 Steinman, R. M. and Idoyaga, J., Features of the dendritic cell lineage. Immunol Rev 2010. 234: 5-17.
    31 Wu, L. and Liu, Y. J., Development of dendritic-cell lineages. Immunity 2007. 26: 741-750.
    32 Liu, K. and Nussenzweig, M. C., Origin and development of dendritic cells. Immunol Rev 2010. 234: 45-54.
    33 Tacken, P. J., de Vries, I. J., Torensma, R. and Figdor, C. G., Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007. 7: 790-802.
    34 Banchereau, J. and Palucka, A. K., Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005. 5: 296-306.
    35 Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. and Melief, C. J., Dendritic cell immunotherapy: mapping the way. Nat Med 2004. 10: 475-480.
    36 Crozat, K., Guiton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B. and Dalod, M., Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 2010. 234: 177-198.
    37 Kadowaki, N., The divergence and interplay between pDC and mDC in humans. Front Biosci 2009. 14: 808-817.
    38 Jewell, N. A., Vaghefi, N., Mertz, S. E., Akter, P., Peebles, R. S., Jr., Bakaletz, L. O., Durbin, R. K., Flano, E. and Durbin, J. E., Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J Virol 2007. 81: 9790-9800.
    39 Lui, G., Manches, O., Angel, J., Molens, J. P., Chaperot, L. and Plumas, J., Plasmacytoid dendritic cells capture and cross-present viral antigens from influenza-virus exposed cells. PLoS One 2009. 4: e7111.
    40 Sandbulte, M. R., Boon, A. C., Webby, R. J. and Riberdy, J. M., Analysis of cytokine secretion from human plasmacytoid dendritic cells infected with H5N1 or low-pathogenicity influenza viruses. Virology 2008. 381: 22-28.
    41 Swiecki, M. and Colonna, M., Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010. 234: 142-162.
    42 Gilliet, M., Cao, W. and Liu, Y. J., Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008. 8: 594-606.
    43 Harada, Y., Ueda, Y., Kinoh, H., Komaru, A., Fuji-Ogawa, T., Furuya, A., Iida, A., Hasegawa, M., Ichikawa, T. and Yonemitsu, Y., Cytokine-based log-scale expansion of functional murine dendritic cells. PLoS One 2009. 4: e6674.
    44 Mortellaro, A., Wong, S. C., Fric, J. and Ricciardi-Castagnoli, P., The need to identify myeloid dendritic cell progenitors in human blood. Trends Immunol 2010. 31: 18-23.
    45 Rolle, A. and Olweus, J., Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures. APMIS 2009. 117: 413-426.
    46 Bowie, A. G. and Unterholzner, L., Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 2008. 8: 911-922.
    47 Takeuchi, O. and Akira, S., Innate immunity to virus infection. Immunol Rev 2009. 227: 75-86.

    48 Akira, S. and Takeda, K., Toll-like receptor signalling. Nat Rev Immunol 2004. 4: 499-511.
    49 Takeda, K. and Akira, S., Toll-like receptors in innate immunity. Int Immunol 2005. 17: 1-14.
    50 Majewska M Fau - Szczepanik, M. and Szczepanik, M., [The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation]. Postepy Hig Med Dosw. 2006. 60: 52-63.
    51 Hou, B., Reizis, B. and DeFranco, A. L., Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 2008. 29: 272-282.
    52 Robbins, M. A. and Rossi, J. J., Sensing the danger in RNA. Nat Med 2005. 11: 250-251.
    53 McGill, J., Heusel, J. W. and Legge, K. L., Innate immune control and regulation of influenza virus infections. J Leukoc Biol 2009. 86: 803-812.
    54 Imai, Y., Kuba, K., Neely, G. G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., Ermolaeva, M., Veldhuizen, R., Leung, Y. H., Wang, H., Liu, H., Sun, Y., Pasparakis, M., Kopf, M., Mech, C., Bavari, S., Peiris, J. S., Slutsky, A. S., Akira, S., Hultqvist, M., Holmdahl, R., Nicholls, J., Jiang, C., Binder, C. J. and Penninger, J. M., Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008. 133: 235-249.
    55 Chan, M. C., Cheung, C. Y., Chui, W. H., Tsao, S. W., Nicholls, J. M., Chan, Y. O., Chan, R. W., Long, H. T., Poon, L. L., Guan, Y. and Peiris, J. S., Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res 2005. 6: 135.
    56 Szretter, K. J., Gangappa, S., Lu, X., Smith, C., Shieh, W. J., Zaki, S. R., Sambhara, S., Tumpey, T. M. and Katz, J. M., Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 2007. 81: 2736-2744.
    57 McFadden, G., Mohamed, M. R., Rahman, M. M. and Bartee, E., Cytokine determinants of viral tropism. Nat Rev Immunol 2009. 9: 645-655.
    58. Liu, Y. J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001. 106: 259-262.

    59 Baskin, C. R., Bielefeldt-Ohmann, H., Tumpey, T. M., Sabourin, P. J., Long, J. P., Garcia-Sastre, A., Tolnay, A. E., Albrecht, R., Pyles, J. A., Olson, P. H., Aicher, L. D., Rosenzweig, E. R., Murali-Krishna, K., Clark, E. A., Kotur, M. S., Fornek, J. L., Proll, S., Palermo, R. E., Sabourin, C. L. and Katze, M. G., Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A 2009. 106: 3455-3460.
    60 Gee, K., Guzzo, C., Che Mat, N. F., Ma, W. and Kumar, A., The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 2009. 8: 40-52.
    61 McGowin Cl Fau - Popov, V. L., Popov Vl Fau - Pyles, R. B. and Pyles, R. B., Intracellular Mycoplasma genitalium infection of human vaginal and cervical epithelial cells elicits distinct patterns of inflammatory cytokine secretion and provides a possible survival niche against macrophage-mediated killing. BMC Microbiology 2009. 9:139.
    62 Tsan, M. F. and Baochong, G., Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J Endotoxin Res 2007. 13: 6-14.
    63 Nayak Dp Fau - Balogun, R. A., Balogun Ra Fau - Yamada, H., Yamada H
    Fau - Zhou, Z. H., Zhou Zh Fau - Barman, S. and Barman, S., Influenza
    virus morphogenesis and budding. Virus Research 2009. 143: 147–161
    64 Chow, A., Toomre, D., Garrett, W. and Mellman, I., Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002. 418: 988-994.
    65 Iwasaki, A. and Medzhitov, R., Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004. 5: 987-995.
    66 Vigerust, D. J. and Shepherd, V. L., Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 2007. 15: 211-218.
    67 Shen, S., Tan, T. H. and Tan, Y. J., Expression, glycosylation, and modification of the spike (S) glycoprotein of SARS CoV. Methods Mol Biol 2007. 379: 127-135.
    68 Mok, K. P., Wong, C. H., Cheung, C. Y., Chan, M. C., Lee, S. M., Nicholls, J. M., Guan, Y. and Peiris, J. S., Viral genetic determinants of H5N1 influenza viruses that contribute to cytokine dysregulation. J Infect Dis 2009. 200: 1104-1112.
    69 Yen, H. L., Aldridge, J. R., Boon, A. C., Ilyushina, N. A., Salomon, R., Hulse-Post, D. J., Marjuki, H., Franks, J., Boltz, D. A., Bush, D., Lipatov, A. S., Webby, R. J., Rehg, J. E. and Webster, R. G., Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 2009. 106: 286-291.
    70 Cox, M. M. and Hollister, J. R., FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 2009. 37: 182-189.
    71 Nwe N Fau - He, Q., He Q Fau - Damrongwatanapokin, S., Damrongwatanapokin S Fau - Du, Q., Du Q Fau - Manopo, I., Manopo I Fau - Limlamthong, Y., Limlamthong Y Fau - Fenner, B. J., Fenner Bj Fau - Spencer, L., Spencer L Fau - Kwang, J. and Kwang, J., Expression of hemagglutinin protein from the avian influenza virus H5N1 in a baculovirus/insect cell system significantly enhanced by suspension culture. BMC Microbiology 2006. 6: 16.
    72 Cox, M. M. and Karl Anderson, D., Production of a novel influenza vaccine using insect cells: protection against drifted strains. Influenza Other Respi Viruses 2007. 1: 35-40.
    73 Wang, K., Holtz, K. M., Anderson, K., Chubet, R., Mahmoud, W. and Cox, M. M., Expression and purification of an influenza hemagglutinin--one step closer to a recombinant protein-based influenza vaccine. Vaccine 2006. 24: 2176-2185.
    74 Hernandez Alvarez B Fau - Hartmann, M. D., Hartmann Md Fau-
    Albrecht, R., Albrecht R Fau - Lupas, A. N., Lupas An Fau - Zeth,
    K., Zeth K Fau - Linke, D. and Linke, D., A new expression system for
    protein crystallization using trimeric coiled-coil adaptors. Protein Eng Des
    Sel 2008. 21:11-18.
    75 Harrison, R. L. and Jarvis, D. L., Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins. Adv Virus Res 2006. 68: 159-191.
    76 Chen, M. W., Cheng, T. J., Huang, Y., Jan, J. T., Ma, S. H., Yu, A. L., Wong, C. H. and Ho, D. D., A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci U S A 2008. 105: 13538-13543.
    77 Tenbusch, M., Grunwald, T., Niezold, T., Bonsmann, M. S., Hannaman, D., Norley, S. and Uberla, K., Codon-optimization of the hemagglutinin gene from the novel swine origin H1N1 influenza virus has differential effects on CD4(+) T-cell responses and immune effector mechanisms following DNA electroporation in mice. Vaccine 2010. 28: 3273-3277.
    78 Safdar, A. and Cox, M. M., Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use. Expert Opin Investig Drugs 2007. 16: 927-934.
    79 Noone, C. M., Lewis, E. A., Frawely, A. B., Newman, R. W., Mahon, B. P., Mills, K. H. and Johnson, P. A., Novel mechanism of immunosuppression by influenza virus haemagglutinin: selective suppression of interleukin 12 p35 transcription in murine bone marrow-derived dendritic cells. J Gen Virol 2005. 86: 1885-1890.
    80 Woo, P. C., Tung, E. T., Chan, K. H., Lau, C. C., Lau, S. K. and Yuen, K. Y., Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies. J Infect Dis 2010. 201: 346-353.
    81 Thitithanyanont, A., Engering, A., Ekchariyawat, P., Wiboon-ut, S., Limsalakpetch, A., Yongvanitchit, K., Kum-Arb, U., Kanchongkittiphon, W., Utaisincharoen, P., Sirisinha, S., Puthavathana, P., Fukuda, M. M. and Pichyangkul, S., High susceptibility of human dendritic cells to avian influenza H5N1 virus infection and protection by IFN-alpha and TLR ligands. J Immunol 2007. 179: 5220-5227.
    82 van den Brand Jm Fau - Stittelaar, K. J., Stittelaar Kj Fau - van Amerongen, G., van Amerongen G Fau - Rimmelzwaan, G. F., Rimmelzwaan Gf Fau - Simon, J., Simon J Fau - de Wit, E., de Wit E Fau - Munster, V., Munster V Fau - Bestebroer, T., Bestebroer T Fau - Fouchier, R. A. M., Fouchier Ra Fau - Kuiken, T., Kuiken T Fau - Osterhaus, A. D. M. E. and Osterhaus, A. D., Severity of pneumonia due to new H1N1 influenza virus in ferrets is intermediate between that due to seasonal H1N1 virus and highly pathogenic avian influenza H5N1 virus. J Infect Dis 2010. 201:993–999
    83 Ballesteros-Tato, A., Leon, B., Lund, F. E. and Randall, T. D., Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8(+) T cell responses to influenza. Nat Immunol 2010. 11: 216-224.
    84 Jung, S., Unutmaz, D., Wong, P., Sano, G., De los Santos, K., Sparwasser, T., Wu, S., Vuthoori, S., Ko, K., Zavala, F., Pamer, E. G., Littman, D. R. and Lang, R. A., In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 2002. 17: 211-220.
    85 Kim, H. J., Kim, H. O., Lee, K., Baek, E. J. and Kim, H. S., Two-step maturation of immature DCs with proinflammatory cytokine cocktail and poly(I:C) enhances migratory and T cell stimulatory capacity. Vaccine 2010. 28: 2877-2886.
    86 Sladkova, T. and Kostolansky, F., The role of cytokines in the immune response to influenza A virus infection. Acta Virol 2006. 50: 151-162.
    87 Cusick, M. F., Wang, S. and Eckels, D. D., In vitro responses to avian influenza H5 by human CD4 T cells. J Immunol 2009. 183: 6432-6441.
    88 Lopez-Bravo, M. and Ardavin, C., In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity 2008. 29: 343-351.
    89 Belz, G. T., Smith, C. M., Eichner, D., Shortman, K., Karupiah, G., Carbone, F. R. and Heath, W. R., Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 2004. 172: 1996-2000.
    90 de Castro, I. F., Guzman-Fulgencio, M., Garcia-Alvarez, M. and Resino, S., First evidence of a pro-inflammatory response to severe infection with influenza virus H1N1. Crit Care 2010. 14: 115.
    91 Heath, W. R. and Carbone, F. R., Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 2001. 1: 126-134.
    92 Ohtsubo, K. and Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006. 126: 855-867.
    93 Igarashi, M., Ito, K., Yoshida, R., Tomabechi, D., Kida, H. and Takada, A., Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One 2010. 5: e8553.
    94 Reading, P. C., Tate, M. D., Pickett, D. L. and Brooks, A. G., Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol 2007. 598: 279-292.
    95 Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., Williams, C. S. and Grenfell, B. T., Host species barriers to influenza virus infections. Science 2006. 312: 394-397.
    96 Hoffmann, E., Lipatov, A. S., Webby, R. J., Govorkova, E. A. and Webster, R. G., Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci U S A 2005. 102: 12915-12920.
    97 Stevens, J., Blixt, O., Chen, L. M., Donis, R. O., Paulson, J. C. and Wilson, I. A., Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J Mol Biol 2008. 381: 1382-1394.
    98 Wang, C. C., Chen, J. R., Tseng, Y. C., Hsu, C. H., Hung, Y. F., Chen, S. W., Chen, C. M., Khoo, K. H., Cheng, T. J., Cheng, Y. S., Jan, J. T., Wu, C. Y., Ma, C. and Wong, C. H., Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 2009. 106: 18137-18142.
    99 Newhouse, E. I., Xu, D., Markwick, P. R., Amaro, R. E., Pao, H. C., Wu, K. J., Alam, M., McCammon, J. A. and Li, W. W., Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 2009. 131: 17430-17442.
    100 Kasson, P. M. and Pande, V. S., Combining mutual information with structural analysis to screen for functionally important residues in influenza hemagglutinin. Pac Symp Biocomput 2009: 492-503.
    101 Panda, A., Qian, F., Mohanty, S., van Duin, D., Newman, F. K., Zhang, L., Chen, S., Towle, V., Belshe, R. B., Fikrig, E., Allore, H. G., Montgomery, R. R. and Shaw, A. C., Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 2010. 184: 2518-2527.
    102 Wong, J. P., Christopher, M. E., Viswanathan, S., Karpoff, N., Dai, X., Das, D., Sun, L. Q., Wang, M. and Salazar, A. M., Activation of toll-like receptor signaling pathway for protection against influenza virus infection. Vaccine 2009. 27: 3481-3483.
    103 Quigley, M., Martinez, J., Huang, X. and Yang, Y., A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 2009. 113: 2256-2264.
    104 Chandran, S. S., Verhoeven, D., Teijaro, J. R., Fenton, M. J. and Farber, D. L., TLR2 engagement on dendritic cells promotes high frequency effector and memory CD4 T cell responses. J Immunol 2009. 183: 7832-7841.
    105 Bohnenkamp, H. R., Papazisis, K. T., Burchell, J. M. and Taylor-Papadimitriou, J., Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses. Cell Immunol 2007. 247: 72-84.
    106 Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. and Reis e Sousa, C., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004. 303: 1529-1531.
    107 Dohnal, A. M., Luger, R., Paul, P., Fuchs, D. and Felzmann, T., CD40 ligation restores type 1 polarizing capacity in TLR4-activated dendritic cells that have ceased interleukin-12 expression. J Cell Mol Med 2009. 13: 1741-1750.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE