研究生: |
葉雅琪 Yen Ya Chi |
---|---|
論文名稱: |
一個雙核心Brusselator反應模型之倍增週期分歧問題探討 Numerical Investigation for the Periodic Doubling Bifurcation Problems of A Brusselator Reaction Model with Two Cells |
指導教授: |
簡國清
Jen Kuo Ching |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 158 |
中文關鍵詞: | 分歧點 、打靶法 、Rung-Kutta積分法 、隱函數定理 、虛擬弧長延拓法 、牛頓迭代法 、解路徑 、倍增週期分歧點 |
外文關鍵詞: | Bifurcation point, Shooting method, Rung-Kutta method, Implicit function theorem, Pseudo-arclength continuation method, Newton's interative method, Solution branches, Periodic-doubling bifurcation points |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論將針對一個雙核心Brusselator反應模型之倍增週期分歧問題進行探討.
首先,我們利用打靶法及牛頓迭代法計算出倍增週期分歧點.接著,我們以隱函數定理為基礎,運用Liapunov-Schmidt降階法、虛擬弧長延拓法、割線預測法及牛頓迭代法等數值方法,延拓出倍增週期分歧點的單週期及倍週期解分支路徑.
In this thesis, we will be aimed at investigating the periodic doubling bifurcation problems of a Brusselator reaction model with two cells.
First, we use shooting method and interative method to compute the periodic-doubling bifurcation points.Also,we use implicit function theorem as a basis and apply the numerical methods of the Liapunov-Schmidt reduction method, pseudo-arclength continuation method, secant-predictor method, and interative method, to continue periodic and periodic-doubling solution branches from periodic-doubling bifurcation points.
[1] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), pp.584-599, 1977.
[2] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, pp.1265-1281, 1986.
[3] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36, pp.1-25, 1980.
[4] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
[5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
[7] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, pp.1-35, 1977.
[8] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
[9] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, pp.267-269, 1984.
[10] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[11] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
[12] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987
[13] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, 1972.
[14] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977..
[15] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
[16] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, 1984.
[17] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24, pp.441-467, 1983.
[18] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York).
[19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, 1980.
[20] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, pp.374-387, 1985.
[21] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
[22] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.
[23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
[24] 張定華, 非線性常微分方程週期倍增分歧問題之數值探討, 新竹教育大 學碩士論文, 2005.
[25] 陳宏傑, Lorenz模型週期解路徑之分歧問題探討, 新竹教育大學碩士論文, 2007.
[26] Csaba H s, Alan Champneys and László Kullmann, Bifurcation analysis of surge and rotating stall in the Moore–Greitzer compression system, IMA Journal of Applied Mathematics 68(2):205-228, 2003.