簡易檢索 / 詳目顯示

研究生: 蔡政霖
Tsai, Jeng-Lin
論文名稱: 能帶工程應用於阻擋氧化層與電荷儲存氧化層以改善電荷陷阱式快閃記憶體操作特性
Improved Operation of CT Flash Memory Device with Band Engineering in Blocking Layer and Trapping Layer
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 崔秉鉞
趙天生
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 119
中文關鍵詞: 能帶工程阻擋氧化層電荷儲存氧化層電荷陷阱式快閃記憶體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於浮動式閘極快閃記憶體無法滿足元件微縮發展的趨勢,因此利用電荷陷阱式快閃記憶體式取代浮動式閘極結構元件是未來發展的趨勢。然而SONOS元件其一穿遂氧化層厚度則大約是30A,就這樣的厚度而言,對於元件在可靠度方面的品質來說就會是一個問題,亦即,要如何在不改變穿遂氧化層厚度的前提之下,仍然能夠讓元件具有十年以上的電荷留存能力?並且在不犧牲資料留存能力的要求下在電性方面能有所提升,這些都是目前急需克服的問題。其二以氮化矽做為電荷儲存層的結構,在發展到次微米以下時就無法再以降低穿隧氧化層厚度的方式來提升元件操作效率,因此便引進了高介電材料來取代傳統ONO結構以提升元件操作特性,但此時面臨到的將是抹除速度與電荷保持力之間的trade-off問題。
    本實驗其一將利用不同高介電係數材料以堆疊方式堆疊出SONOS元件的阻擋氧化層,研究主要是利用不同的材料具有不同的特性,配合堆疊式的結構、能隙大小的改變,K值的影響,堆疊厚度的改變等種種原因,利用能帶工程堆疊出最恰當的阻擋氧化層。本實驗其二將利用不同高介電係數的材料與氮化矽搭配,以堆疊的方式堆疊出電荷儲存層。研究主要是利用不同材料具有不同的特性,配合堆疊的結構,藉著電荷陷阱密度的多寡、能階大小的改變、K值影響分壓的不同、陷阱能階等種種特性,配合能帶工程堆疊出最佳特性的電荷儲存層。
    實驗結果可發現,引進能帶工程,各別利用對阻擋氧化層與電荷儲存層的特性,堆疊出適當的結構,將有助於提升元件的效能,寫入/抹除/電荷保持力。


    摘要 I 目錄 II 圖目錄 VI 第一章序論 1 1.1 前言 1 1.2 快閃記憶體面臨問題 2 1.3 電荷陷阱式快閃記憶體的結構及其優缺點 2 1.4 研究目的 5 1.5 各章摘要 7 第二章快閃記憶體元件操作方法 14 2.1 寫入與抹除方法 14 2.1.1 CHEI通道熱電子注入寫入 14 2.1.2 CHISEL初始通道載子引發二次電子注入寫入 15 2.1.3 BBHE帶對帶穿隧引發熱電子寫入 15 2.1.4 FN穿隧寫入 16 2.1.5 FN穿隧抹除 17 2.2 耐久力 17 2.3 干擾 18 2.4 電荷保持力 19 第三章 實驗規劃及元件製程 31 3.1 實驗規劃 31 3.2電容元件製程 32 3.2.1 前段製程 32 3.2.2 成長穿隧氧化層 32 3.2.3 沉積電荷儲存層以及阻擋層 33 3.2.3.1電容元件製程一 33 3.2.3.2電容元件製程二 33 3.2.4 後段製程 33 3.3 電晶體元件製程 34 3.3.1前段製程、成長穿隧氧化層、沉積電荷儲存層以及阻擋層 34 3.3.2 金屬閘極,源極,汲極,基極形成 34 3.3.3 接出金屬導線 35 電容元件製程一 36 電容元件製程二 36 第四章 不同能障結構的堆疊式阻擋氧化層對電荷陷阱式快閃記憶體元件的影響 41 4.1 研究背景與目的 41 4.2 實驗規劃及製程 42 4.3 實驗結果與討論 44 4.3.1. 三層與兩層堆疊式阻擋氧化層對電荷陷阱式快閃記憶體元件特性的影響 45 4.3.1.1寫入速度 45 4.3.1.2抹除速度 46 4.3.1.3電荷保持力 48 4.3.2具有HLH或LHL能障結構之堆疊式阻擋氧化層對電荷陷阱式快閃記憶體元件特性的影響 48 4.3.2.1寫入速度 48 4.3.2.2抹除速度 50 4.3.2.3電荷保持力 51 4.4 結論 52 第五章 不同能障結構的電荷儲存層對於電荷陷阱式快閃記憶體元件的影響 67 5.1研究背景與目的 67 5.2實驗規畫與製程 69 5.3實驗結果與討論 71 5.3.1電荷儲存層NLH和NHL結構的元件特性比較 72 5.3.1.1 NLH和NHL結構元件的寫入速度比較 72 5.3.1.2 NLH和NHL結構元件的抹除速度比較 72 5.3.1.3 NLH和NHL結構元件的電荷保持力比較 73 5.3.2兩層與三層堆疊式儲存層對電荷陷阱式快閃記憶體元件特性的影響 74 5.3.2.1 寫入速度 74 5.3.2.2 抹除速度 75 5.4結論 77 第六章 氮化矽與不同高介電係數材料形成堆疊式電荷儲存層對電荷陷阱式快閃記憶體電晶體特性研究 88 6.1 研究背景與目的 88 6.2 實驗規劃及製程 90 6.3 實驗結果與討論 91 6.3.1不同的三層堆疊式電荷儲存層對電荷陷阱式快閃記憶體元件特性的影響 92 6.3.1.1 FN寫入速度 92 6.3.1.2 FN抹除速度 93 6.3.1.3 電荷保持力 93 6.3.1.4 BBHE寫入速度 94 6.3.1.5 FN抹除速度 95 6.3.1.6電荷保持力 95 6.3.2 三層與兩層堆疊式電荷儲存層元件特性之比較 96 6.3.2.1 FN寫入速度 96 6.3.2.2 FN抹除速度 96 6.3.2.3 電荷保持力 97 6.3.2.4 BBHE寫入速度 97 6.3.2.5 FN抹除速度 98 6.3.2.6 電荷保持力 99 6.4 結論 99 第七章 結論與建議 111 7.1 結論 111 7.2 未來研究方向 112 參考資料 113

    [1] Harry Pon , et al. , “Technology Scaling Impact on NOR and NAND Flash Memories and Their Applications” , International Conference on Solid-State and Integrated Circuit Technology , Oct. 2006 , page(s):697-700
    [2] Min She, “semiconductor Flash Memory Scaling” , University of California, Berkeley , Doctor of Philosophy , 2003
    [3] A. Paul, Ch. Sridhar, et al, “Comprehensive Simulation of Program, Erase and
    Retention in Charge Trapping Flash Memories” International Device Electron Meeting , 2006 , page(s)1-4
    [4] Y. N. Tan, et al. , ” Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer” IEEE Transactions on Electron Device Device,Vol.51 , No.7, 2004, page(s): 1143- 1147
    [5] J. V. Houdt, et al. , ”High-k materials for nonvolatile memory applications”, International Reliability Physics Symposium , April 17-21,2005 , page(s):234-239
    [6] T. Sugizaki, M. Kobayashi, et al. , “Novel Multi-bit SONOS Type Flash Memory using a High-k Charge Trapping Layer” , VLSI Technology Symposium , 2003 , page(s):27-18
    [7] Y. N. Tan, et al., “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation” , International Electron Device Meeting , 2004 , page(s):889-892
    [8] M. S. Joo, et al., ”Dependence of Chemical Composition Ratio on Electrical
    Properties of HfO2 Al2O3 Gate Dielectric” , Japanese Journal of Applied Physics. , No.3A, page(s):1220-1222 , March , 2003
    [9] W.J. Zhu , et al. ”Effect of Al Inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Devices Letters,Vol.23,NO.11, Page(s):649-651,2002
    [10] G. Molas et al. , “Thorough investigation of Si-nanocrystal memories with high-k interpoly dielectrics for sub-45nm node Flash NAND applications” International Electron Device Meeting , 2007 , page(s):453-456
    [11] Y. N. Tan , “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-type Nonvolatile Memory for High-Speed Operation” , IEEE Transactions on Electron Devices , April 2006 , Page(s):654-662
    [12] Z. L. Huo et al. , “Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory” , VLSI Technology Symposium , 2007 , page(s):138-139
    [13] G.Zhang et al. , “Potential Well Engineering by Partial Oxidation of TiN for High-Speed and Low-Voltage Flash Memory with Good 125oC Data Retention and Excellent Endurance” , International Electron Device Meeting , 2009 , page(s):1-4
    [14] G.D. Wilk, et al. , “High-K gate dielectrics: Current status and material properties considerations” , Journal of Applied Physic , 2001, page(s): 5243-5275
    [15] W.J. Tsai, et al., “Data retention behavior of a SONOS type two-bit storage flash memory cell” , International Electron Device Meeting , 2001 , Page(s):32.6.1-32.6.4
    [16] K. T. San , et al. , “Effects of erase source bias on Flash EPROM device reliability” , IEEE Transactions on Electron Devices, V January 1995 , page(s):150-159
    [17] M. Chang et al. , “Charge loss behavior of a metal alumina nitride oxide silicon type flash memory cell with different levels of charge injection” , Applied Physics Letters , 2008 , page(s):232105-232105-3
    [18] G. Verma, et al. , “Reliability Performance of ETOX Based Flash Memory” , International Reliability Physics Symposium , 1998 , page(s):158-166
    [19] S. Haddad, et al. , “Degradation Due to Hole Trapping in Flash memory cells” , IEEE Electron Dev. Letters , 1989 , page(s):117-119
    [20] Y. Shin et al, ”A Novel NAND-type MONOS Memory using 63nm Process Technology for Multi-Gigabit Flash EEPROMs” , International Electron Device Meeting , 2005 , page(s):327-330
    [21] K.T. Park, et al , “A 64-Cell NAND Flash Memory with Asymmetric S/D Structure for Sub-40nm Technology and Beyond” , VLSI Technology Symposium , 2006, page(s):19-20

    [22] Sandhya C. et al, “Nitride Engineering and the effect of interfaces on charge trap flash performance and reliability” , International Reliability Physics Symposium ,2008 , page(s):406-411
    [23] Z. Huo et al., “Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory”, VLSI Technology Symposium , 2007, page(s):138-139.
    [24] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989.
    [25] Adam Brand, et al., ”Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp., P.127, 1993.
    [26] Y. N. Tan, W. K. Chim, W. K. Choi et al., “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation,” IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 654-662, Apr, 2006.
    [27] Takahiro Ohnakado, Hiroshi Onoda, Osamu Sakamoto, Kiyoshi Hayashi, Naho Nishioka,Hiroshi Takada, Kazuyuki Sugahara, Natsuo Ajika, and Shin-ichi Satoh et al,” Device Characteristics of 0.35 m P-Channel DINOR Flash Memory Using Band-to-Band Tunneling- Induced Hot Electron (BBHE) Programming,” IEEE Transactions on Electron Devices, vol. 46, no. 9, Page(s): 1866 - 1871 SEPTEMBER 1999
    [28] S. Choi, M. Cho, H. Hwang et al., “Improved metal/oxide/nitride/oxide/silicon type flash device with high-k dielectrics for blocking layer,” Journal of Applied Physics, vol. 94, no. 8, pp. 5408-5410, Oct, 2003.
    [29] Ping-Hung Tsai, et al. , “Novel SONOS-Type Nonvolatile Memory Device With Optimal Al Doping in HfAlO Charge-Trapping Layer ” Electron Device Letters, IEEE ,Volume: 29 , Issue: 3 ,2008 , Page(s): 265 - 268
    [30] Ping-Hung Tsai, et al. , “Charge-Trapping-Type Flash Memory Device With Stacked High- Charge-Trapping Layer ” Electron Device Letters, IEEE ,Volume: 30 , Issue: 7 ,2009 , Page(s): 775 - 777
    [31] Zong-Hao Ye, et al. , “Charge trapping flash device with Si3N4/HfxAl1−xO stack charge trapping layer” Semiconductor Device Research Symposium, ISDRS , 2009,Page(s): 1-2
    [32] Yang, H.J. , et al. , “Comparison of MONOS Memory Device Integrity When Using Trapping Layers With Different N Compositions”
    Electron Devices, IEEE ,Volume: 55 , Issue: 6 2008 , Page(s): 1417 - 1423
    [33] Buckley, et al. , “In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs ” Electron Devices Meeting, 2006. IEDM '06. International, 2006 , Page(s): 1 – 4
    [34] Hou, Z. F.; Gong, X. G.; Li, Quan , “ Energetics and electronic structure of aluminum point defects in HfO2: A first-principles study” Journal of Applied Physics,Volume: 106, 2009 , Page(s): 014104 - 014104-6
    [35] Zong-Hao Ye,Kuei-Shu Chang-Liao, et al. , “Electrical characteristic of charge-trapped flash memory are improved by SL/Al2O3 and Al2O3/High-K stacked blocking layer”
    [36] Lee et al., Journal of Vacuum Science. 2010,page(s): 1005 – 1010
    [37] Tsunehiro INO et al., Jpn. J. Appl. Phys, 45 (2006),page(s): 2908–2913
    [38] Jyun-Yi Wu et al., IEEE Electron Device Letters, 2010,page(s): 993 - 995
    [39] N. Umezawa , et al , “The role of nitrogen incorporation in Hf-based High-k dielectrics : reduction in electron charge traps” , Solid-State Device Research Conference , 2005 , page(s):201-204
    [40] Y.Q. Wang , et al., “Fast erasing and highly reliable MONOS type memory with HfO2 high-k trapping layer and Si3N4/SiO2 tunneling stack” , International Electron Device Meeting , 2006 , page(s):1-4
    [41] T.S. Chen , et al., “Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer” Electron Device Letters , 2004 , page(s):205-207
    [42] Gabriel Molas , ”Investigation of Hafnium-aluminum alloys in views of integration an interpoly dielectrics of future Flash memories” , Solid-State Electronics , 2007
    [43] Takahiro Ohnakado, Hiroshi Onoda, Osamu Sakamoto, Kiyoshi Hayashi, Naho Nishioka,Hiroshi Takada, Kazuyuki Sugahara, Natsuo Ajika, and Shin-ichi Satoh et al,” Device Characteristics of 0.35 m P-Channel DINOR Flash Memory Using Band-to-Band Tunneling- Induced Hot Electron (BBHE) Programming,” IEEE Transactions on Electron Devices, vol. 46, no. 9, Page(s): 1866 - 1871 SEPTEMBER 1999
    [44] Min-Ta Wu et al,”Study of the Band-to-Band Tunneling Hot-Electron (BBHE) Programming Characteristics of p-Channel Bandgap-Engineered SONOS (BE-SONOS) ” Electron Devices, IEEE ,Volume: 54 , 2007 , Page(s): 699 - 706

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE