簡易檢索 / 詳目顯示

研究生: 黃政銘
論文名稱: ALD低溫成長ZnO磊晶薄膜及其結構與光學特性研究
Optical and Structural Properties of ZnO Epitaxial Films Growth at Low Temperature by Atomic Layer Deposition
指導教授: 林志明
Chih-Ming Lin
李信義
Hsin-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 氧化鋅原子層沉積磊晶薄膜藍寶石基板
外文關鍵詞: m-plane sapphire, c-plane sapphire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以原子層沉積法(Atomic layer deposition, ALD),以二乙基鋅(diethylzinc, DEZn)與去離子水(H2O)做為前驅物,成長氧化鋅磊晶薄膜於 c-plane sapphire與m-plane sapphire基板上。本論文分成兩個部分。第一部分探討新製程氣流中斷法(flow rate-interruption method, FIM)與傳統連續氣流法對於成長在c-plane sapphire之ZnO薄膜結構與發光特性之變化。第二部分利用氣流中斷法的原子層沉積製程,在m-plane sapphire成長出非極性的磊晶薄膜。
      第一部分中,改變不同的成長溫度,使用氣流中斷法成長出一系列的ZnO薄膜,由X光繞射結果(X-ray Diffraction, XRD)顯示在40℃-160℃是較佳的成長溫度區間,比較傳統連續氣流法所成長的薄膜品質較佳。PL光譜儀顯示使用氣流中斷法可增強發光強度。由同步輻射光得到ZnO(101)和sapphire(113)排列在一起, Φ scan得到六軸對稱,顯示是磊晶薄膜。使用氣流中斷法有增加薄膜品質的效果,並且成功的在c-plane sapphire上成長出磊晶薄膜。
    第二部分的討論是在200℃使用氣流中斷法成在m-plane sapphire上長出不同週期數的ZnO磊晶薄膜。經由同步輻射光束線17B1的 Φ scan分析,ZnO(002)與sapphire(020)是二重對稱,顯示是磊晶薄膜。由CTR(crystal-truncation-rod) scan得知ZnO薄膜與m-plane sapphire基板兩者的晶胞結合相對關係分別是[002]ZnO∥[020]sapphire與[020]ZnO∥[006]sapphire。高解析穿透是顯微鏡(High Resolution Transmission Electron Microscope)與XRD的比較得知minor phase是來自於薄膜與基板的介面,薄膜品質和螢光強度隨著膜厚而增加。


    In this study, epitaxial ZnO were grown on c-plane sapphire and m-plane sapphire substrate by atomic layer deposition (ALD) with diethylzinc (DEZn) and deionized water (H2O) as the precursor. This dissertation is divided into two parts. In the first part, the ZnO thin films grown on c-plane sapphire with flow-rate interruption method compared the results of traditional continuous flow process. In the secondary part, we use the new process, ALD with flow-rate interruption method to grow epitaxial non-polar ZnO thin film on m-plane sapphire.
    At first, the ZnO thin film grown on c-plane sapphire with flow rate interruption method with different temperature form 25℃-200℃. The results of high resolution X-ray diffraction (HRXRD) show the growth temperature at range from 40 to 160 degree showed better crystalline quality. In additional, the Photoluminescence (PL) spectra of ZnO thin film with flow-rate interruption method also showed the enhancement of near-band-edge (NBE) intensity. The synchrotron off-normal phi-scan of ZnO (113) bragg peak showed six-fold symmetry and well align to (101) of sapphire substrate indicated that the ZnO thin film was epitaxial relationship to sapphire. Using the flow-rate interruption method not only can improved the optical quality but also grow the epitaxial ZnO film on c-plane sapphire.
    In the next, we also grew ZnO epitaxial films for different ALD cycles on m-plane sapphire at growth temperature with 200 degree by ALD with flow-rate interruption method. The synchrotron results shows two-fold symmetry of ZnO (002) indicated that the ZnO is epitaxial film. The epitaxial relationship between ZnO and sapphire follows [002]ZnO//[020]sapphire and [020]ZnO//[006]sapphire. The high resolution transmission electron microscope (HRTEM) and XRD showed that relatively minor phase is from the interface between film and substrate. The photoluminescence intensity increased with increasing crystalline quality and thickness of ZnO films.

    誌謝................................................Ⅰ 摘要................................................Ⅲ 目錄................................................Ⅵ 表目錄..............................................Ⅸ 圖目錄..............................................Ⅹ 第一章、序論.........................................1 1.1 前言............................................1 1.2 研究動機.........................................3 1.3 文獻回顧.........................................7 1.3.1氧化鋅基本性質...............................7 1.3.2發光機制....................................9 1.4 參考資料........................................12 第二章、製程原理及設備................................15 2.1 ALD技術........................................15 2.2 ALD的成長原理...................................18 2.3 氣流中斷法(Flow interruption Method, FIM)的概念..21 2.4 傳統的成長過程和氣流中斷法的差異...................22 2.5 量測儀器........................................24 2.5.1 PL光譜儀..................................24 2.5.2 X-ray光譜儀...............................25 2.5.3 Raman光譜儀...............................34 2.6 參考資料........................................39 第三章、實驗方法與步驟.................................40 3.1 在C-plane sapphire (0001) 成長氧化鋅ZnO薄膜......40 3.1.1清潔藍寶石基板C-plane sapphire..............41 3.1.2成長ZnO薄膜................................41 3.1.3參數的影響.................................43 3.1.4成長過程...................................46 3.2 在在M-plane sapphire (10-10) 成長ZnO薄膜..........48 3.2.1清潔藍寶石基板C-plane sapphire..............48 3.2.2成長ZnO薄膜.................................49 3.2.3參數的影響..................................51 3.2.4成長過程....................................52 第四章、結果與討論.....................................53 4.1 在C-plane sapphire (0001) 成長氧化鋅ZnO薄膜.......54 4.1.1 XRD(X-ray diffraction)的量測與結果......55 4.1.2光激發光譜(PL,photoluminescence)的量測 與結果................................................62 4.2 成長在m-plane sapphire (10-10) 的氧化鋅ZnO薄 膜....................................................64 4.2.1 X-ray量測(XRD、CTR scan)...............65 4.2.2高解析穿透式顯微鏡量測....................74 4.2.3極化拉曼光譜......................................76 4.2.4低溫(10K) PL光譜.................................78 4.3 參考資料.........................................79 第五章、結論...........................................80 第六章、未來工作.......................................83 參考資料..............................................84

    第一章
    1.Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science , 292, 5523, 1897 – 1899 (2001).
    2.D. C. Kim, W. S. Han, B. H. Kong, H. K. Cho, C. H. Hong, Physica B 401–402, 386–390 (2007).
    3.S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 34, 3(2003).
    4.P. Vinotha Boorana Lakshmi, K. Sakthi Raj, and K. Ramachandran, Cryst. Res. Technol. 44, No. 2, 153 – 158 (2009).
    5.物質安全資料表MSDS的序號1081項
    6.J.Herr ero, C.Guillen, Thin Solid Films, 451–452, 630–633 (2004)
    7.W. Lina, R. Maa, J. Xueb, B. Kang, Solar Energy Materials & Solar Cells, 91, 1902–1905 (2007).
    8.P. Fons, K. Iwata, S. Niki, A. Yamada and K. Matsubara, J. Cryst. Growth, 201-202, 627-632 (1999).
    9.M. Caglar, S. Ilican , Y. Caglar , F. Yakuphanoglu, Appl. Surf. Sci. 255, 4491 (2009).
    10.C. S. Hong, H. H. Park, J. Moon, H.H. Park, Thin Solid Films, 515, 957–960 (2006).
    11.M. A. Martínez, J. Herrero, M. T. Gutiérrez , Solar Energy Materials and Solar Cells, 45, 75-86 (1997).
    12.J. Yooa, J. Leeb, S. Kimb, K. Yoonb, I. J. Parkb, S.K. Dhungela, B. Karunagarana, D. Mangalaraja, J. Yia, Thin Solid Films, 480–481, 213– 217 (2005).
    13.S. Faÿ , J. Steinhauser , S. Nicolay , C. Ballif, Thin Solid Films, 518, 2961–2966 (2010).
    14.B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, Y. Segawa, Thin Solid Films ,449, 12 (2004).
    15.L. Xiaonan, S.E. Asher, S. Limpijumnong, B.M. Keyes, C.L. Perkins, T.M. Barnes, H.R. Moutinho, J.M. Luther, S.B. Zhang, H.S. Wei, T.J. Coutts, J. Cryst. Growth, 287, 94 (2006).
    16.K. Minegishi, Y. Koiwai, K. Kikuchi, Jpn. J. Appl. Phys. 36 (1997) L1453–L1455
    17.D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
    18.F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, W.P. Beyermann, Appl. Phys. Lett. 87, 152101 (2005).
    19.M. Joseph, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. 38, L1205–L1207 (1999)
    20.A.V. Singh, R.M. Mehra, A. Wakahara, A. Yoshida, J. Appl. Phys. 93, 396–399 (2003).
    21.A. Wojcik, M. Godlewski, E. Guziewicz, R. Minikayev, W. Paszkowicz, J. Cryst. Growth 310, 284 (2008).
    22.J. Lim, C. Lee,Thin Solid Films, 515, 3335 (2007).
    23.C. Lee , S. Y. Park, J. Lim, H. W. Kim , Materials Letters, 61, 2495–2498 (2007)
    24.K. Kopalko, M. Godlewski, J. Z. Domagala, E. Lusakowska, R. Minikayev,W. Paszkowicz, A. Szczerbakow, Chem. Mater., 16, 1447-1450 (2004).
    25.張達欣, “利用化學氣相沉積法生長非極性之氧化鋅(10-10)薄膜在鋁酸鋰基板上”, 中山大學材料科學所碩士論文, 97.
    26.T. Moriyama ,S. Fujita, Jpn. J. Appl. Phys 44, 11, 7919–7921 (2005).
    27.P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, Nature, 406, 865 (2000).
    28.P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim,and M. E. Motamedi, IEEE Trans. 29, 27, (1982).
    29.E. S. Kim and R. S. Muller, IEEE Electr. 8, 467-468 (1987).
    30.K. M. Lakin, J. S. Wang, Appl. Phys. Lett. 38, 125 (1981).
    31.K.F. Cai, X.R. He, L. C. Zhang, Materials Letters 62, 1223–1225 (2008).
    32.N. K. Park , G. B. Han a, J. D. Lee , S, O, Ryu , T, J, Lee ,W, C, Chang , C, H, Chang, Current Applied Physics, 6S1, e176–e181 (2006).
    33.T. Okada , K. Kawashima, Y. Nakata, Thin Solid Films, 506– 507, 274 – 277 (2006).
    34.S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 34, 3 (2003).
    35.P. Vinotha Boorana Lakshmi, K. Sakthi Raj, and K. Ramachandran, Cryst. Res. Technol. 44, No. 2, 153 – 158 (2009).
    36.F. Liua, P.J. Caoa,b, H.R. Zhanga, C.M. Shena, Z. Wanga,c, J.Q. Lia, H.J. Gaoa, J. Cryst. Growth. 274, 126–131 (2005).
    37.A. Umar, S.H. Kim, Y.-S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth. 282, 131–136 (2005).
    38.X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong, J. Lumin. 99, 149–154 (2002).
    39.K. Vanheusden,a) W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    40.B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    第二章
    1.T. Suntola , J. Antson, U.S. Patent No. 4058430 (1977).
    2.F. Y. Tsai, Instruments Today, 29, 1, 44-49 (2007)
    3.李侃峰, 黃智勇, 王慶鈞, “原子層沉積技術的沿革”, 機械工業雜誌 2009.5 , 51-57
    4.T. Suntola , A. J. Pakkala, S. G. Lindfors, U.S. Patent No. 4389973 (1983).
    5.盧天惠, ”X光繞射與應用”, 2002. 9 , 11-29
    6.國家同步輻射中心簡介, “加速器光源”, 2009.4 , 1-9.
    7.王如春, “X-ray繞射基礎原理介紹” , 12-13.
    8.郭奇文, “奈米氧化鋅的成長與應用”, 海洋大學光電科學所碩士論文, 94
    9.J. M. Calleja, Manual Cardona, Phys. Rev. B 16, 3753 (1977).
    10.Frederic Decremps, Julio Pellicer-Porres, A. Marco Saitta, Jean-Claude Chervin, Alain Polian , Phys. Rev. B 65, 092101 (2002).
    11.C. A. Arguello, D. L. Rousseau, S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
    12.H.Siegle, G. Kaczmarczyk, L. Filippidis,A. P. Litvinchuk, A. Hoffmann, C. Thomsen, Phys. Rev. B 55, 7000 (1997).
    13.C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
    14.A. P. Jephcoat et al., Phys. Rev. B 37, 4727(1988).

    第四章
    1.W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang, Appl. Phys. Lett. 88, 173506, (2006)
    2.K. Vanheusden,a) W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79, 7983 (1996)
    3.T. Moriyama ,S. Fujita, Jpn. J. Appl. Phys 44, 11, 7919–7921 (2005)
    4.B. Lin, Z, Fu,Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    第六章
    1.W. I. Park, G. C. Yi, M. Kim, S. J. Pennycook, Adv. Mater, 15, 6 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE