研究生: |
莊皓宇 Chuang, Hao-Yu |
---|---|
論文名稱: |
開發可形成液滴的光控胜肽以調控FUS蛋白的相變 The development of droplet-forming peptide as photocontrollable phase modulator for FUS protein |
指導教授: |
黃人則
Huang, Jen-Tse 洪嘉呈 Horng, Jia-Cherng |
口試委員: |
江昀緯
Chiang, Yun-Wei 陳儀莊 Chern, Yi-Juang 黃介嶸 Huang, Jie-Rong |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 液-液相分離 、生物分子凝聚體 、FUS蛋白 、聚集體 、光控胜肽 、漸凍症 |
外文關鍵詞: | liquid-liquid phase separation, biomolecular condensate, fused in sarcoma, aggregate, photocontrollable peptide, amyotrophic lateral sclerosis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物分子凝聚體(biomolecular condensates)的形成和消散是細胞用於區隔各種化學反應的一環,參與生物分子的濃度調節、緩衝、感應外界的刺激及信號傳遞等過程。這些生物分子凝聚體的形成原理是生物高分子的液-液相分離(LLPS),使系統產生兩個分離的相(phase),其中一個相是含有高濃度生物高分子的液滴(droplet),另一個相則是生物高分子濃度較低的水溶液。隨著生物分子的濃度增加,凝聚體可能會進一步轉變為膠態或固態,最終形成聚集體(aggregate),而這些聚集體可能與神經退化性疾病有關。研究顯示,在細胞中許多含有低複雜度區域(LCD)的蛋白質,例如FUS和TDP-43,會參與這些生物分子凝聚體的相變。為了研究生物分子凝聚體相變在細胞中的作用,必須控制凝聚體的物理狀態。然而,目前仍缺乏有效的工具來調控這些凝聚體的相變。
為了解決這個問題,我們希望利用光控胜肽作為一個新的工具來控制FUS蛋白的凝聚,並在光的刺激下誘發FUS蛋白的固化。通過分析FUS蛋白的序列,我們首先找出LCD中一段富含酪胺酸,且容易形成聚集體的片段。藉著將該片段與帶正電的多精胺鏈結合後,我們創造了能形成液滴的胜肽(JSF1)。照光後,我們發現JSF1可以釋放多精胺鏈,使LCD片段形成類澱粉纖維(amyloid-like fibril)。通過光學顯微鏡、原子力顯微鏡和電子顯微鏡,我們也鑑定了JSF1在照光前後物理性質的改變。
利用JSF1的相變特性,我們成功將JSF1用於調控FUS蛋白的相變。當FUS蛋白加入JSF1時,FUS蛋白的凝聚會被增強,而照光之後的JSF1成功誘導了FUS蛋白的纖維化。當我們將JSF1加入神經細胞株(N2A)時,發現JSF1能穿透細胞膜並存在於細胞質中。通過Fluorescence recovery after photobleaching (FRAP)的實驗,我們發現JSF1增加了細胞質FUS蛋白凝聚體的流動性。而照光之後,FUS凝聚體的流動性顯著降低。最後,我們分析了神經細胞的存活率,發現FUS凝聚體的流動性與細胞存活率之間存在正相關。
在這個研究中,我們開發了在試管及細胞中調控FUS蛋白相變的新方法。未來,黃老師實驗室可利用JSF1,以及蛋白質體學和RNA定序等方法,繼續探索FUS相變與其蛋白質病理(proteinopathy)之間的關聯。
The biomolecular condensates are important for the subcellular compartmentalization for controlling of cellular reactions such as biomolecule concentration, buffering, stimulus sensing, and signaling. These biomolecular condensates are formed via liquid-liquid phase separation (LLPS), by which the biopolymers condense to form liquid droplet (dense phase) separated from the environment depleting of the biopolymers (dilute phase). However, aberrant LLPS might lead to liquid-to-gel or liquid-to-solid phase transition (maturation) of the condensates, possibly resulting in neurodegenerative disease-related pathological aggregates. It has also been revealed that many proteins with low complexity domain (LCD) such as fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43) are responsible for these processes. To reveal the roles of phase transition of biomolecular condensates, controlling the phases of condensates is necessary. However, a useful tool to modulate the physical states of the biomolecular condensates is still lacking.
To tackle this issue, we aim to create a peptide-based phase modulator capable of modulating FUS protein condensation and transforming FUS condensates into solid-like aggregates in response to external stimuli. Through the analyzing the sequence of FUS, an aggregation-prone, tyrosine-rich fragment in the LCD of FUS was identified. By conjugating the fragment to a positively-charged tract, we created a peptide, JSF1, which could undergo LLPS and form spherical droplets spontaneously. After photoinitiation, the poly-arginine tract was released, leading to formation of amyloid-like fibrils of the LCD fragment. With the aid of optical microscopy, atomic force microscopy, and transmission electron microscopy, the distinct physical properties of JSF1 before and after photoinitiation was characterized.
Taking advantage of the phase transition properties of JSF1, we successfully applied it in modulating the phases of FUS protein condensates. While JSF1 was incubated with FUS in vitro, the condensation of FUS was effectively enhanced. Upon photoinitiation, JSF1 induced the fibrilization of FUS. When we added JSF1 to live neuronal cell line, we found JSF1 could penetrated cell membrane and mainly localize in the cytosol. Through the fluorescence recovery after photobleaching assay, we found JSF1 increased the fluidity of cytosolic FUS condensates. After photoinitiation, the fluidity of FUS condensates was dramatically decreased. Finally, the cell viability assay demonstrated the positive correlation between the fluidity of FUS condensates and cell viability of neuronal cells.
In this study, we successfully created a novel approach for modulating the phases of FUS protein both in vitro and in cells. By applying proteomics and RNA-seq, Joseph Huang's Lab could further explore the correlation between the FUS phase transition and its proteinopathy in the near future.
1 Abbas, M., Lipinski, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690-3705 (2021). https://doi.org:10.1039/d0cs00307g
2 Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017). https://doi.org:10.1038/nrm.2017.7
3 Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nature Physics 11, 899-904 (2015). https://doi.org:10.1038/Nphys3532
4 Kanai, Y. R. K. a. M. Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. Bull. Chem. Soc. Jpn. 94, 1045-1058 (2021). https://doi.org:10.1246/bcsj.20200397
5 Feng, Z., Chen, X., Wu, X. & Zhang, M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 294, 14823-14835 (2019). https://doi.org:10.1074/jbc.REV119.007895
6 Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165-182 (2021). https://doi.org:10.1038/s41580-020-0272-6
7 Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361-372 (2013). https://doi.org:10.1083/jcb.201302044
8 Alberti, S., Gladfelter, A. & Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 176, 419-434 (2019). https://doi.org:10.1016/j.cell.2018.12.035
9 Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51-61 (1942). https://doi.org:Doi 10.1063/1.1723621
10 Huggins, M. L. Some properties of solutions of long-chain compounds. J. Phys. Chem. 46, 151-158 (1942). https://doi.org:DOI 10.1021/j150415a018
11 Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 14, 1 (2016). https://doi.org:10.1186/s12964-015-0125-7
12 Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife 3 (2014). https://doi.org:10.7554/eLife.04123
13 Lee, J., Cho, H. & Kwon, I. Phase separation of low-complexity domains in cellular function and disease. Exp. Mol. Med. 54, 1412-1422 (2022). https://doi.org:10.1038/s12276-022-00857-2
14 Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694-699 (2020). https://doi.org:10.1126/science.aaw8653
15 Wang, J. et al. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 174, 688-699 e616 (2018). https://doi.org:10.1016/j.cell.2018.06.006
16 Abbas, M., Lipinski, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid-liquid phase separation. Nat. Chem. 13, 1046-1054 (2021). https://doi.org:10.1038/s41557-021-00788-x
17 Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39-58 (2014). https://doi.org:10.1146/annurev-cellbio-100913-013325
18 Wegmann, S. et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37 (2018). https://doi.org:10.15252/embj.201798049
19 Ray, S. et al. alpha-Synuclein aggregation nucleates through liquid-liquid phase separation. Nat. Chem. 12, 705-716 (2020). https://doi.org:10.1038/s41557-020-0465-9
20 Gao, C. et al. Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep. 40, 111086 (2022). https://doi.org:10.1016/j.celrep.2022.111086
21 Hofweber, M. et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 173, 706-719 e713 (2018). https://doi.org:10.1016/j.cell.2018.03.004
22 Patel, A. et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066-1077 (2015). https://doi.org:10.1016/j.cell.2015.07.047
23 Luo, F. et al. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol. 25, 341-346 (2018). https://doi.org:10.1038/s41594-018-0050-8
24 Passarella, D. & Goedert, M. Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiol. Aging 72, 98-105 (2018). https://doi.org:10.1016/j.neurobiolaging.2018.07.022
25 Babinchak, W. M. et al. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem. 294, 6306-6317 (2019). https://doi.org:10.1074/jbc.RA118.007222
26 Elbaum-Garfinkle, S. Matter over mind: Liquid phase separation and neurodegeneration. J. Biol. Chem. 294, 7160-7168 (2019). https://doi.org:10.1074/jbc.REV118.001188
27 Alberti, S. et al. A User's Guide for Phase Separation Assays with Purified Proteins. J. Mol. Biol. 430, 4806-4820 (2018). https://doi.org:10.1016/j.jmb.2018.06.038
28 Ishikawa-Ankerhold, H. C., Ankerhold, R. & Drummen, G. P. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047-4132 (2012). https://doi.org:10.3390/molecules17044047
29 Michael Krieg, G. F., David Alsteens, Benjamin M. Gaub, Wouter H. Roos, Gijs J. L. Wuite, Hermann E. Gaub, Christoph Gerber, Yves F. Dufrêne & Daniel J. Müller. Atomic force microscopy-based mechanobiology. Nature Reviews Physics 1, 41-57 (2018). https://doi.org:10.1038/s42254-018-0001-7
30 Qamar, S. et al. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-pi Interactions. Cell 173, 720-734 e715 (2018). https://doi.org:10.1016/j.cell.2018.03.056
31 Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat Nanotechnol 15, 841-847 (2020). https://doi.org:10.1038/s41565-020-0731-4
32 Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097-R1102 (2017). https://doi.org:10.1016/j.cub.2017.08.069
33 Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl. Acad. Sci. U. S. A. 120, e2301366120 (2023). https://doi.org:10.1073/pnas.2301366120
34 Tan, A. Y., Riley, T. R., Coady, T., Bussemaker, H. J. & Manley, J. L. TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proc. Natl. Acad. Sci. U. S. A. 109, 6030-6035 (2012). https://doi.org:10.1073/pnas.1203028109
35 Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 6, 6171 (2015). https://doi.org:10.1038/ncomms7171
36 Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46-64 (2010). https://doi.org:10.1093/hmg/ddq137
37 Kwiatkowski, T. J., Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205-1208 (2009). https://doi.org:10.1126/science.1166066
38 Chen, S., Sayana, P., Zhang, X. & Le, W. Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8, 28 (2013). https://doi.org:10.1186/1750-1326-8-28
39 Chen, C., Ding, X., Akram, N., Xue, S. & Luo, S. Z. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Molecules 24 (2019). https://doi.org:10.3390/molecules24081622
40 Kamelgarn, M. et al. ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc. Natl. Acad. Sci. U. S. A. 115, E11904-E11913 (2018). https://doi.org:10.1073/pnas.1810413115
41 Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727-736 (2013). https://doi.org:10.1016/j.cell.2013.07.038
42 Shang, Y. & Huang, E. J. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 1647, 65-78 (2016). https://doi.org:10.1016/j.brainres.2016.03.036
43 Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922-2931 (2009). https://doi.org:10.1093/brain/awp214
44 Yoshizawa, T. et al. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173, 693-705 e622 (2018). https://doi.org:10.1016/j.cell.2018.03.003
45 Boczek, E. E. et al. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain. Elife 10 (2021). https://doi.org:10.7554/eLife.69377
46 Gu, J. et al. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc. Natl. Acad. Sci. U. S. A. 117, 31123-31133 (2020). https://doi.org:10.1073/pnas.2002437117
47 Li, Y. et al. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 25, 104356 (2022). https://doi.org:10.1016/j.isci.2022.104356
48 Liu, Z. et al. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 27, 363-372 (2020). https://doi.org:10.1038/s41594-020-0399-3
49 An, H. et al. ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiol. Dis. 162, 105585 (2022). https://doi.org:10.1016/j.nbd.2021.105585
50 Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918-921 (2018). https://doi.org:10.1126/science.aar7366
51 Murray, D. T. et al. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Cell 171, 615-627 e616 (2017). https://doi.org:10.1016/j.cell.2017.08.048
52 Ding, X. et al. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation. J. Mol. Biol. 432, 467-483 (2020). https://doi.org:10.1016/j.jmb.2019.11.017
53 Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951-2967 (2017). https://doi.org:10.15252/embj.201696394
54 Walsh, I., Seno, F., Tosatto, S. C. & Trovato, A. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42, W301-307 (2014). https://doi.org:10.1093/nar/gku399
55 Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38-48 (2001). https://doi.org:10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3
56 Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501-2502 (2014). https://doi.org:10.1093/bioinformatics/btu310
57 Vernon, R. M. et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7 (2018). https://doi.org:10.7554/eLife.31486
58 Wilkins, M. R. et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531-552 (1999). https://doi.org:10.1385/1-59259-584-7:531
59 He, R. Y. et al. Photocontrollable Probe Spatiotemporally Induces Neurotoxic Fibrillar Aggregates and Impairs Nucleocytoplasmic Trafficking. ACS Nano 11, 6795-6807 (2017). https://doi.org:10.1021/acsnano.7b01645
60 Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806-1813 (2010). https://doi.org:10.1016/j.febslet.2009.11.046
61 Boeynaems, S. et al. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol. Cell 65, 1044-1055 e1045 (2017). https://doi.org:10.1016/j.molcel.2017.02.013
62 Dignon, G. L., Zheng, W., Kim, Y. C. & Mittal, J. Temperature-Controlled Liquid-Liquid Phase Separation of Disordered Proteins. ACS Cent Sci 5, 821-830 (2019). https://doi.org:10.1021/acscentsci.9b00102
63 Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 12, 1085 (2021). https://doi.org:10.1038/s41467-021-21181-9
64 Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773-778 (2005). https://doi.org:10.1038/nature03680
65 Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. Mol. Cell 60, 231-241 (2015). https://doi.org:10.1016/j.molcel.2015.09.006
66 Liu, G. C. et al. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem. Commun. (Camb.) 49, 11212-11214 (2013). https://doi.org:10.1039/c3cc46762g
67 Ghaffari, H. et al. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sci. 113, 7-13 (2014). https://doi.org:10.1016/j.lfs.2014.07.010
68 Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N. & Buchman, V. L. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Hum. Mol. Genet. 23, 5211-5226 (2014). https://doi.org:10.1093/hmg/ddu243
69 Shelkovnikova, T. A., Robinson, H. K., Connor-Robson, N. & Buchman, V. L. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 12, 3194-3202 (2013). https://doi.org:10.4161/cc.26241
70 Murakami, T. et al. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 88, 678-690 (2015). https://doi.org:10.1016/j.neuron.2015.10.030
71 Sun, J. et al. Precise prediction of phase-separation key residues by machine learning. Nat Commun 15, 2662 (2024). https://doi.org:10.1038/s41467-024-46901-9
72 Chu, X. et al. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinformatics 23, 72 (2022). https://doi.org:10.1186/s12859-022-04599-w
73 Chen, Z. et al. Screening membraneless organelle participants with machine-learning models that integrate multimodal features. Proc. Natl. Acad. Sci. U. S. A. 119, e2115369119 (2022). https://doi.org:10.1073/pnas.2115369119
74 Su, Q., Mehta, S. & Zhang, J. Liquid-liquid phase separation: Orchestrating cell signaling through time and space. Mol. Cell 81, 4137-4146 (2021). https://doi.org:10.1016/j.molcel.2021.09.010
75 Banani, S. F. et al. Compositional Control of Phase-Separated Cellular Bodies. Cell 166, 651-663 (2016). https://doi.org:10.1016/j.cell.2016.06.010
76 Zhou, W., Mohr, L., Maciejowski, J. & Kranzusch, P. J. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol. Cell 81, 739-755 e737 (2021). https://doi.org:10.1016/j.molcel.2021.01.024
77 Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093-1097 (2019). https://doi.org:10.1126/science.aau6313
78 Zeng, M. et al. Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell 174, 1172-1187 e1116 (2018). https://doi.org:10.1016/j.cell.2018.06.047
79 Espinosa, J. R. et al. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc. Natl. Acad. Sci. U. S. A. 117, 13238-13247 (2020). https://doi.org:10.1073/pnas.1917569117
80 Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841-862 (2022). https://doi.org:10.1038/s41573-022-00505-4
81 Patel, A. et al. Principles and functions of condensate modifying drugs. Front Mol Biosci 9, 1007744 (2022). https://doi.org:10.3389/fmolb.2022.1007744
82 Khong, A., Jain, S., Matheny, T., Wheeler, J. R. & Parker, R. Isolation of mammalian stress granule cores for RNA-Seq analysis. Methods 137, 49-54 (2018). https://doi.org:10.1016/j.ymeth.2017.11.012