研究生: |
林宥均 Lin, Yu-Chun |
---|---|
論文名稱: |
耐溫耐磨耐蝕高熵合金之開發 Development of high-entropy alloys with high wear, corrosion and temperature resistances |
指導教授: |
葉均蔚
Yeh, Wei-Jien |
口試委員: |
洪健龍
李勝隆 蔡哲瑋 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 158 |
中文關鍵詞: | 高熵合金 、鈷基合金 、耐溫 、耐磨 、耐蝕 |
外文關鍵詞: | High-Entropy, Stellite, Temperature resistance, Wear resistance, Corrosion resistance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Stellite合金為同時擁有高硬度、耐磨耗、抗腐蝕及耐高溫的鈷基合金,因此常被應用在較嚴苛的環境中,如刀具、模具、高溫閥門、等。
本研究為降低Stellite之成本並改善其性質,開發新型高熵合金,與Stellite媲美而有取代的機會。
結果顯示本研究所開發的合金表現出優異的抗腐蝕性、抗氧化能力且擁有高硬度,優於Stellite,深具應用的潛力。
Stellite is a series of cobalt-base alloy which has high hardness, wear and corrosion resistance and high temperature properties. Thus, stellite alloys are typically used in severe conditions encountered by cutting tools, molds, valves, etc.
In this research, we want to develop new and cheaper high entropy alloys which have excellent properties better than Stellite.
The results show that we successfully develop a series alloys with outstanding resistance to corrosion, oxidation and wear. Overall performance of these alloys is better than Stellite. These high-entropy alloys own their potential in various severe applications.
[1] Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. 2004. 6(5): p. 299-303.
[2] Jien-Wei, Y.J.A.C.S.M., Recent progress in high entropy alloys. 2006. 31(6): p. 633-648.
[3] 陳昭蓉, 以雙盤研磨法製作WC/(Co-Cr-Mo-Ni) 超硬合金之開發研究, in 材料科學工程學系. 2016, 國立清華大學. p. 228.
[4] Sims, C.T., N.S. Stoloff, and W.C. Hagel, superalloys II. 1987: Wiley New York.
[5] Pelloux, R. and N. Grant, SOLID SOLUTIONS AND SECOND PHASE STRENGTHENING OF NICKEL ALLOYS AT HIGH AND LOW TEMPERATURES. 1959, Massachusetts Inst. of Tech., Cambridge. Dept. of Metallurgy.
[6] Fleischer, R.L.J.A.m., Substitutional solution hardening. 1963. 11(3): p. 203-209.
[7] Morinaga, M., et al., New PHACOMP and its applications to alloy design. 1984: p. 523-532.
[8] Machlin, E. and J.J.M.T.A. Shao, SIGMA-SAFE: A phase diagram approach to the sigma phase problem in ni base superalloys. 1978. 9(4): p. 561-568.
[9] Jiang, C.J.A.m., Site preference of transition-metal elements in B2 NiAl: A comprehensive study. 2007. 55(14): p. 4799-4806.
[10] 潘金生, 仝健民, and 田民波, 材料科学基础. 1998: 清华大学出版社有限公司.
[11] Properties, A.H.J.V., Selection: Nonferrous Alloys and Special-Purpose Materials. 1990. 2: p. 78-79.
[12] Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. 2005. 36(4): p. 881-893.
[13] Hsu, C.-Y., et al., Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. 2004. 35(5): p. 1465-1469.
[14] Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. 2004. 6(1‐2): p. 74-78.
[15] Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. 2004. 35(8): p. 2533-2536.
[16] Chen, Y., et al., Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. 2005. 47(9): p. 2257-2279.
[17] Tong, C.-J., et al., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. 2005. 36(5): p. 1263-1271.
[18] Chen, M.-R., et al., Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. 2006. 47(5): p. 1395-1401.
[19] Chen, M.-R., et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. 2006. 37(5): p. 1363-1369.
[20] Wu, J.-M., et al., Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. 2006. 261(5-6): p. 513-519.
[21] Hsu, U., et al., Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. 2007. 460: p. 403-408.
[22] Lai, C.-H., et al., Mechanical and tribological properties of multi-element (AlCrTaTiZr) N coatings. 2008. 202(15): p. 3732-3738.
[23] Tsai, M.-H., et al., Thermally stable amorphous (Al Mo Nb Si Ta Ti V Zr) 50 N 50 nitride film as diffusion barrier in copper metallization. 2008. 92(5): p. 052109.
[24] Chen, Y., et al., Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. 2005. 47(11): p. 2679-2699.
[25] Chen, Y., et al., Selected corrosion behaviors of a Cu0. 5NiAlCoCrFeSi bulk glassy alloy in 288 C high-purity water. 2006. 54(12): p. 1997-2001.
[26] Chen, Y., et al., Corrosion properties of a novel bulk Cu0. 5NiAlCoCrFeSi glassy alloy in 288° C high-purity water. 2007. 61(13): p. 2692-2696.
[27] Ranganathan, S.J.C.s., Alloyed pleasures: multimetallic cocktails. 2003. 85(5): p. 1404-1406.
[28] Åstrand, M., et al., PVD-Al2O3-coated cemented carbide cutting tools. 2004. 188: p. 186-192.
[29] Tung, C.-C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. 2007. 61(1): p. 1-5.
[30] Swalin, R.A. and J.J.J.o.T.E.S. Arents, Thermodynamics of solids. 1962. 109(12): p. 308C-308C.
[31] Kelsall, R.W., I.W. Hamley, and M. Geoghegan, Nanoscale Science and Technology. 2005.