研究生: |
曹菀婷 Tsao, Wan-Ting |
---|---|
論文名稱: |
以邏輯斯模型為基之工程資產壽期預測方法及系統平台-以油浸式變壓器為例 A Logistic Regression Model and System to Forecast Engineering Asset Lifespan |
指導教授: |
張瑞芬
Amy J. C. Trappey 張力元 Charles V. Trappey |
口試委員: |
張國浩
邱垂昱 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 工程資產管理 、生命週期預測 、邏輯斯迴歸 、韋伯分配 |
外文關鍵詞: | Engineering Asset Management, Life Cycle Prognosis, Logistic Regression, Weibull Distribution |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電力供應系統中,大型電力變壓器一直是最受重視的工程資產之一,若變壓器在運轉期間由於故障造成電力中斷,對經濟及電力供應之穩定性將造成極大的衝擊及影響。然而,現今針對大型電力變壓器之維修模式,仍然是以當事故發生後的被動性系統維修為主,或是進行週期性的例行性全面維修保養作業,皆無法有效預防突發性事故的發生。因此,大型變壓器在電力系統中之工程資產管理早已成為企業的營運要素,並著重於提前預防與即時診斷維護,以避免突發事故之發生。
本研究以油浸式變壓器為研究標的,首先找到影響變壓器運作狀況及壽命的關鍵工程參數,針對壽期預測提出以邏輯斯迴歸和韋伯分配等理論為基礎的壽期評估方法,建立工程資產壽命評估模型,用以預測變壓器之剩餘壽命。本研究分別為33 kV、69 kV及161 kV等級之變壓器,以油中溶解氣體、糠醛量及正異常狀態為輸入值,依不同等級建立相對應的邏輯斯模型,再用此模型計算各筆數據之失效機率,用以配適單台變壓器的生命週期曲線,進而計算該變壓器之已耗損年限、壽期及剩餘壽命。另外並整合IEEE (Institute of Electrical and Electronics Engineers) 之Doernenburg診斷法、Rogers診斷法以及IEC (International Electrotechnical Commission) 所制定之Duval Triangle診斷法等三種油中氣體分析法,診斷變壓器內部可能的故障,提供交叉比對之診斷分析。本研究將提出以遠端即時監控資訊為基之大型電力變壓器智慧型維護支援平台,包含工程參數資料之即時監控、故障診斷模組與壽期預測模組之建立。其中即時監控模組可以隨時監控變壓器的歷史數據,觀察其趨勢,監控項目包含油溫、線溫、周溫、電壓、電流、濕度、壓力、負載、油中溶解氣體各分量及總量等。本研究之決策支援平台與變壓器的監控設備連線,即時將設備狀態資料導入資料庫中,並實際收集33 kV、69 kV和161 kV等級之變壓器數據,以利做為導入並測試系統平台的案例分析。本研究提供剩餘資產壽命之精準評估模組,以及智慧型維護管理模組,以利高價值工程資產 (變壓器為例) 之最佳運用。
Large sized engineering assets such as power transformers are important parts of the power supply chain. If there is a shutdown during transformer operation, the economy and stability of the power supply will suffer a huge impact. Therefore, transformers are the critical parts of power systems and their engineering asset management is a critical concern. In order to prevent sudden power shut downs, it is essential to diagnose and detect signs of potential faults and maintain or fix the problems immediately. Hence, we study oil-immersed transformers as an engineering asset in this research. We identify the key factors influencing transformer optimal operating conditions and asset management lifespan. Then, this research develops innovative real-time transformer lifespan forecasting approaches based on logistic regression and the Weibull distribution. Further, using dissolved gas analysis (DGA) based on the three methods, i.e., Doernenburg, Rogers (revised by Institute of Electrical and Electronics Engineers, IEEE) and Duval Triangle (described in the International Electrotechnical Commission (IEC) document), we can diagnose potential transformer malfunctions and provide maintenance suggestions. Finally, this research proposes an intelligence maintenance recommendation platform including real-time condition monitoring, failure diagnostics, and lifespan forecasting modules. The platform helps engineering asset managers quickly compile the data that are collected from the real-time remote monitoring equipment and regular sampling reports, analyzes the transformer’s default types and lifespan evaluation, and provides emergency measurements. The research methodology and system modules are evaluated and verified with data from a series of 33 kV, 69 kV, and 161 kV transformers. Thus, decision makers better control and maintain the big transformer engineering assets of high value, minimize unexpected failures and shutdowns, and extend the life of these assets toward optimal usage.
[1] Abu-Elanien, A.E.B. and Salama, M.M.A., 2010, “Asset management techniques for transformers,” Electric Power Systems Research, Vol. 80, No. 4, pp.456 – 464.
[2] Ariffin, M.F. and Ghosh, P.S., 2007, “Estimating the age of paper insulation in 33/11 kV distribution power transformers using mathematical modeling,” 19th International Conference on Electricity Distribution, May 21-24, 2007, Vienna, pp. 1-4.
[3] Arshad, M., Islam, S.M. and Khaliq, A., 2004, “Power transformer asset management,” International Conference on Power System Technology (PowerCon 2004), November 21-24, Singapore, Vol. 2, pp. 1395-1398.
[4] Bangemann, T., Rebeuf, X., Reboul, D., Schulze, A. and Szymanski, J., 2006, “PROTEUS—Creating distributed maintenance systems through an integration platform,” Computers in Industry, Vol. 57, Issue 6, pp. 539-551.
[5] Berkson, J., 1944, “Application of the logistic function to bio-assay.” Journal of the American Statistical Association, Vol. 39, No. 227, pp. 357-365.
[6] Chaidee, E. and Tippachon, W., 2011, "Failure statistics and condition evaluation for power transformer maintenance," 2011 Asia-Pacific Power and Energy Engineering Conference, March 25- 28, Wuhan, China, pp. 1-4.
[7] Cooperative Research Centre for Infrastructure and Engineering Asset Management (CIEAM), 2012, http://www.cieam.com/site.
[8] Duda, R. O., Hart, P. E. and Stork, D. G., 2001, Pattern classification, 2nd edition. New York: John Wiley & Sons.
[9] Han, D., Ma, L., and Yu C., 2008, “Financial prediction: Application of logistic regression with factor analysis,” Wireless Communications, Networking and Mobile Computing (WiCOM '08), Oct. 12-14, 2008, Dalian, pp. 1-4.
[10] Hodkiewicz, M.R. and Pascual, R., 2006, “Education in engineering asset management – current trends and challenges,” International Physical Asset Management Conference, August 28-31, Tehran, Iran.
[11] Hosmer, D.W. and Lemeshow, S., 1989, “Applied logistic regression,” New York, John Wiley and Sons.
[12] International Electrotechnical Commission, 2007, “IEC 60599 Ed. 2.1 b: 2007 Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis,” May 15.
[13] Institute of Electrical and Electronics Engineers, 1995, “IEEE Std. C57.91-1995 IEEE Guide for Loading Mineral-Oil-Immersed Transformers,” June 14.
[14] Institute of Electrical and Electronics Engineers, 2003, “IEEE Std. C57.91-1995/Cor 1-2002 IEEE Guide for Loading Mineral-Oil-Immersed Transformers Corrigendum 1,” June 12.
[15] Institute of Electrical and Electronics Engineers, 2009, “C57.104-2008 IEEE Guide for the interpretation of gases generated in oil-Immersed transformers,” February 2, pp. 1-27.
[16] Jahromi, A., Piercy, R., Cress, S., Service, J. and Fan, W., 2009, “An approach to power transformer asset management using health index,” Electrical Insulation Magazine, IEEE, Vol.25, pp.20-34.
[17] Jongen, R., Gulski, E., Morshuis, P., Smit, J., and Janssen, A., 2007, “Statistical analysis of power transformer component life time data,” 8th International Power Engineering Conference (IPEC2007), 25-28 March 2011, Wuhan, pp. 1273-1277.
[18] Lee, T.H., Lee, J.H., Chung, S.W., Noh, H.W., Shim, Y.W., and Kim, D.W., 2009, “A survival prediction model of hemorrhagic shock in rats using a logistic regression equation,” 31st Annual International Conference of the IEEE EMBS, September 2-6, 2009, Minneapolis, Minnesota, USA, pp.1274-1277.
[19] Liao, H., Zhao, W. and Guo, H., 2006, “Predicting remaining useful life of an individual unit using Proportional Hazards Model and Logistic Regression Model,” Reliability and Maintainability Symposium (RAMS 2006), January 23-26, Newport Beach, CA, pp. 127 - 132.
[20] Liao, R.J., Tang, C., Yang, L.J., Feng, Y. and Sun C.X., 2009, “Influence of the copper ion on aging rate of oil–paper insulation in a power transformer,” IET Electric Power Applications, Vol. 3, Issue 5, pp. 407–412.
[21] Ma C., Tang W.H.T. , Yang Z., Wu Q.H. and Fitch J., 2007, “Asset managing the power dilemma,” IEE Control and Automation Magazine, IEE Press, October, pp. 40-45.
[22] McArthur, S.D.J., Booth, C.D., McDonald, J.R., and McFadyen, I.T., 2005, “An agent-based anomaly detection architecture for condition monitoring,” IEEE Transactions on Power Systems, Vol. 20, No. 4, pp. 1675-1682.
[23] Muhamad, N.A., Phung, B.T., Blackburn, T.R., and Lai, K.X., 2007, “Comparative study and analysis of DGA methods for transformer mineral oil,” IEEE Power Tech, pp. 45-50.
[24] Muthanna, K.T., Sarkar, A., Das, K., and Waldner, K., 2006, “Transformer insulation life assessment,” IEEE Transactions on Power Delivery, Vol. 21, No. 1, pp. 150-156.
[25] Parkes, D., 1978, “Terotechnology Handbook,” Her Majesty's Stationery Office, London.
[26] PAS 55-1: Asset Management: Specification for the optimized management of physical assets, 2008, British Standards Institution, UK.
[27] Pradhan, M.K. and Ramu, T.S., 2005, “On the estimation of elapsed life of oil-immersed power transformers,” IEEE Transactions on Power Delivery, July 27, Vol. 20, No. 3, pp. 1962-1969.
[28] Shintemirov, A., Tang, W., and Wu, Q.H., 2009, “Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming,” IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, Vol. 39, No. 1, pp. 69-79.
[29] Stebbins, R.D., Myers, D.S. and Shkolnik, A.B., 2003, “Furanic compounds in dielectric liquid samples: Review and update of diagnostic interpretation and estimation of insulation ageing,” Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, June 1-5, Nagoya, pp. 921-926.
[30] Suwanasri, C. and Suwanasri, T., 2009, “Statistical method with efficient IT support for power transformer asset management,” 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2009), May 6-9, Pattaya, Chonburi, pp. 88-91.
[31] Tsuboi, T., Takami, J., Okabe, S., Inami, K. and Aono, K., 2011, "Aging effect on insulation reliability evaluation with Weibull distribution for oil-immersed transformers," IEEE Transactions on Dielectric and Electrical Insulation, Vol.17, No. 6, pp. 1869-1876.
[32] Trappey, A.J.C., Trappey, C.V., Sun, Y., Ma, L., and Chen, K.J., 2012, “A group method of data handling for oil-immersed transformer life cycle assessment,” 2012 International Conference on Advanced Manufacture (ICAM 2012), March 4-8, 2012, Jiaoxi, Yilan County, Taiwan.
[33] Trappey, C.V., Wu, H.-Y., Taghaboni-Dutta, F. and Trappey, A.J.C., 2011, “Using patent data for technology forecasting: China RFID patent analysis,” Advanced Engineering Informatics, Vol. 25, pp. 53-64.
[34] Wouters, P.A.A.F., Schijndel, A.V. and Wetzer, J.M., 2011, “Remaining lifetime modeling of power transformers: Individual assets and fleets,” Electrical Insulation Magazine, IEEE, Vol. 27, no. 1, pp.45 – 51.
[35] Wagle, A.M., Lobo, A.M., Santosh Kumar.A, Shubhangi Patil and A.Venkatasami, 2008, “Real time web based condition monitoring system for power transformers - case study,” International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21-24 April 2008, pp. 1307 - 1309.
[36] Yan, J. and Lee, J., 2005, “Degradation assessment and fault modes classification using logistic regression,” Journal of Manufacturing Science and Engineering, Vol. 127, pp. 912-914.
[37] Yiu, T.W., Cheung, S.O., and Chow, P.T., 2008, “Logistic regression modeling of construction negotiation outcomes,” IEEE Transactions on Engineering Management, Vol. 55, No. 3, pp. 468-478.
[38] 王浩庭及詹涵雅,「應用類神經網路於油浸式變壓器之故障診斷系統」,國立清華大學工業工程與工程管理學系專題報告,2009年。
[39] 王濟川及郭志剛,「Logistic迴歸模型:方法及應用」,五南出版社,2003年。
[40] 倪煒均,2009,「協同維修鏈之協商策略研究及多代理人為基之平台設計與發展」,碩士論文(指導教授:張瑞芬),國立清華大學工業工程與工程管理學系。
[41] 鄭奕成,1993,「油浸式變壓器之溫度抑制與壽命診斷」,華城技術刊物第2期,1993年6月,pp. 34-40。
[42] 蕭維承,2008,「以代理人為核心之工程資產管理維修鏈整合研究」,博士論文(指導教授:張瑞芬及馬林),國立清華大學工業工程與工程管理學系。
[43] 羅伯.亞博納希 (Abernethy, R.B.) 原著,劉啟沼翻譯,2007,「新韋伯分析手冊 (The new Weibull handbook, 2nd ed.)」。
[44] 台灣電力公司全球資訊網站,2012,http://www.taipower.com.tw/。