簡易檢索 / 詳目顯示

研究生: 陳盈君
Chen, Ying-Chun
論文名稱: 利用自組裝雷射光鉗系統探討紫杉醇對免疫細胞RAW264.7黏度的影響
Using self-assembled optical tweezers system to study the effect on cytoplasmic viscosity of immune cell RAW 264.7 by Paclitaxel
指導教授: 吳見明
Wu, Chien-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 96
中文關鍵詞: 雷射光鉗黏彈性剪力模數黏度紫杉醇免疫細胞細胞骨架細胞凋亡
外文關鍵詞: optical tweezers, viscoelasticity, complex shear modulus, viscosity, Paclitaxel, immune cell, cytoskeleton, apoptosis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1970年Arthur Ashkin研究出利用雷射光為基礎的捕捉技術後,雷射光鉗(optical tweezers)便開始不斷創新發展進步。近年來,雷射光鉗為一種研究細胞體內與體外機械特性的技術工具,例如量測細胞質的黏彈性(viscoelasticity)及細胞裡外的複數形式的剪力模數(complex shear modulus)等。本研究先行架設雷射光鉗系統,以一道雷射光分光為一捕捉光和一偵測光來達到偵測微球於介質中布朗運動的目的。本研究欲改善之前量測黏度相關研究中利用捕捉推測大小及形狀的胞器而使黏度等物理特性為推算值的部份,利用抓取送入免疫細胞RAW 264.7內直徑約2 μm的聚苯乙烯微球(polystyrene bead)以直接量測免疫細胞RAW 264.7內的黏度並使用Selhuber-Unkel等人所使用的表示方法來呈現介質的黏度[1],接著加入抗癌藥物–紫杉醇(Paclitaxel)觀測免疫細胞因藥物造成黏度的改變。
    進行研究之前,需先行量測自組裝光鉗系統的參數,例如光鉗的彈性係數及光四象限二極體的電壓–位移轉換因子–β等。本研究利用固定微球方法(stuck bead method)以及兩種以能量頻譜為基礎來計算的方法求得β值,而光鉗鋼性係數的量測分別使用能量頻譜(power spectral density)、能量均分定理(equipartition)及波茲曼分佈(Boltzman distribution)來分析。了解此系統的物理參數後,隨後利用此系統針對已知液體的黏度做量測,結果發現相符合。隨後進行量測正常免疫細胞的黏度並與相關文獻比較,再加入紫杉醇與細胞共培養,量測細胞在藥物累積下的黏度變化。
    本研究發現當藥物累積,免疫細胞的黏度會越來越小,一開始3小時間黏度會大幅度的改變到最後趨於平穩的狀態。除此之外,本研究藉由細胞的型態以及共軛焦掃描顯微鏡的判斷,推測透過本實驗亦可觀測到細胞走向細胞凋亡的過程。本研究推測在200 nM濃度下的紫杉醇,加藥後0.5-1小時的時間應為藥物作用於細胞的時間,而1-3小時開始有細胞內溶解酵素的參與分解細胞骨架,3-8.5小時後,免疫細胞走向細胞凋亡。本研究希冀提供未來藉由量測細胞的黏度來看藥物對於細胞是否走向細胞凋亡的方法。


    第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 文獻回顧 6 1-3-1 雷射光鉗的相關研究 6 1-3-2 雷射光鉗運用於量測液體黏度之介紹 7 1-3-3 細胞模型的建立 12 1-3-4 量測細胞的黏彈度 15 1-3-5 紫杉醇(Paclitaxel) 17 第二章 實驗原理 19 2-1 黏度之分析 19 2-2 雷射光鉗之原理與介紹 23 2-3 雷射光鉗之偵測原理 26 第三章 雷射光鉗系統之架構與原理 28 3-1 雷射光鉗系統圖 28 3-2 光路之整體架設與原理 29 3-3 光四象限二極體與相關元件之擺放 30 第四章 實驗設計與方法 32 4-1 實驗流程圖 32 4-2 實驗材料與儀器設備 33 4-2-1 光學元件 33 4-2-2 實驗材料 33 4-2-3 儀器設備 34 4-3 實驗方法-系統的校正與量測方法 35 4-3-1 β值的量測 35 4-3-2 移動平台的量測 39 4-3-3 雷射光鉗彈性係數的量測 40 4-4 實驗樣品的配製 43 4-4-1 細胞培養基的製備 43 4-4-2 不同粒徑大小的微球製備 43 4-4-3 流道的製作 44 4-4-4 細胞實驗流程 44 4-4-5 聚苯乙烯微球於細胞體內之判斷 48 4-4-6 共軛焦掃瞄顯微鏡之樣本配製 50 4-4-7 雷射光鉗之量測 51 4-4-9 相位式顯微鏡之觀測 52 第五章 結果與討論 53 5-1 系統的建立與量測 53 5-1-1 系統的建立 53 5-1-2 系統之相關參數量測 55 5-2 量測已知液體黏度之量測 64 5-3 聚苯乙烯微球於細胞體內之確認 67 5-3-1 流式細胞儀 67 5-3-2 DIC顯微鏡 68 5-3-3 共軛焦顯微鏡 69 5-4 量測細胞內的黏度 71 5-5 紫杉醇對免疫細胞之影響 73 第六章 結論 87 第七章 未來展望 89 參考文獻 90

    1. Selhuber-Unkel, C., et al., Variety in intracellular diffusion during the cell cycle. Physical Biology, 2009. 6(2).
    2. Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett., 1970 24: p. 4.
    3. Ashkin, A., Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(10): p. 4853-4860.
    4. Ashkin, A., et al., Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 1986. 11: p. 3.
    5. Greenleaf, W.J., M.T. Woodside, and S.M. Block, High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct, 2007. 36: p. 171-90.
    6. Moffitt, J.R., et al., Recent advances in optical tweezers. Annu Rev Biochem, 2008. 77: p. 205-28.
    7. Uemura, S. and S. Ishiwata, Loading direction regulates the affinity of ADP for kinesin. Nat Struct Biol, 2003. 10(4): p. 308-11.
    8. Bormuth, V., et al., Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science, 2009. 325(5942): p. 870-3.
    9. Sims, P.A. and X.S. Xie, Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem, 2009. 10(9-10): p. 1511-6.
    10. Howard, J., Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., 2001. Chap. 15.
    11. Balland, M., A. Richert, and F. Gallet, The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts. Eur Biophys J, 2005. 34(3): p. 255-61.
    12. Visscher, K., M.J. Schnitzer, and S.M. Block, Single kinesin molecules studied with a molecular force clamp. Nature, 1999. 400(6740): p. 184-9.
    13. Wang, M.D., et al., Stretching DNA with optical tweezers. Biophys J, 1997. 72(3): p. 1335-46.
    14. Abbondanzieri, E.A., et al., Direct observation of base-pair stepping by RNA polymerase. Nature, 2005. 438(7067): p. 460-5.
    15. Neuman, K.C., et al., Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 2003. 115(4): p. 437-47.
    16. Ichikawa, M. and K. Yoshikawa, Optical transport of a single cell-sized liposome. appl phys lett, 2001. 79: p. 3.
    17. Yoko Shitamichi, M.I., Yasuyuki Kimura, Mechanical properties of a giant liposome studied using optical tweezers. Chemical Physics Letters, 2009.
    18. Nemet, B.A. and M. Cronin-Golomb, Measuring microscopic viscosity with optical tweezers as a confocal probe. Appl Opt, 2003. 42(10): p. 1820-32.
    19. Brau, R.R., et al., Passive and active microrheology with optical tweezers. Journal of Optics a-Pure and Applied Optics, 2007. 9(8): p. S103-S112.
    20. Gittes, F., et al., Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters, 1997. 79(17): p. 3286-3289.
    21. Tassieri, M., et al., Measuring storage and loss moduli using optical tweezers: Broadband microrheology. Physical Review E, 2010. 81(2): p. -.
    22. Raghu, A. and S. Ananthamurthy, Construction of an optical tweezer for nanometer scale rheology. Pramana-Journal of Physics, 2005. 65(4): p. 699-705.
    23. Nemet, B.A., Y. Shabtai, and M. Cronin-Golomb, Imaging microscopic viscosity with confocal scanning optical tweezers. Opt Lett, 2002. 27(4): p. 264-6.
    24. Pesce, G., et al., Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements. Journal of Optics a-Pure and Applied Optics, 2009. 11(3).
    25. Mason, T.G. and D.A. Weitz, Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett, 1995. 74(7): p. 1250-1253.
    26. G. Pesce, A.S., S. Fusco, A.Borzacchiello, P. Netti, Optical Tweezers as a tool for microrheology of simplex and complex fluids. proceedind of SPIE, 2004. 5514.
    27. Sasso, G.P.a.A., Viscosity measurements on micron-size scale using optical tweezers. REVIEW OF SCIENTIFIC INSTRUMENTS, 2005. 76.
    28. A. Buosciolo, G.P., A. Sasso, New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Optics Communications, 2004. 230.
    29. Yao, A., et al., Microrheology with optical tweezers. Lab on a Chip, 2009. 9(17): p. 2568-2575.
    30. Neuman, K.C. and S.M. Block, Optical trapping. Rev Sci Instrum, 2004. 75(9): p. 2787-809.
    31. Hansen, P.M. and L.B. Oddershede, Optical trapping inside living organisms. SPIE Digital Library, 2005. 5930: p. 1-9.
    32. Mills, J.P., et al., Continuous force-displacement relationships for the human red blood cell at different erythrocytic evelopmental stages of Plasmodium falciparum malaria parasite. Mater. Res. Soc. Symp. Proc., 2005. 844: p. 6.
    33. Yanjie Li, C., Huimin Xie, Anpei Ye, Yajun Yin, Mechanical property analysis of stored red blood cell using optical tweezers. Colloids and Surfaces B: Biointerfaces, 2009. 70.
    34. Greulich, K.O., et al., Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules. J Microsc, 2000. 198(Pt 3): p. 182-7.
    35. Zhang, H. and K.K. Liu, Optical tweezers for single cells. J R Soc Interface, 2008. 5(24): p. 671-90.
    36. Wei, M.T., et al., A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt Express, 2008. 16(12): p. 8594-603.
    37. Liao, G.B., et al., One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. Opt Express, 2008. 16: p. 9.
    38. Bareil, P.B., Y. Sheng, and A. Chiou, Local stress distribution on the surface of a spherical cell in an optical stretcher. Opt Express, 2006. 14: p. 7.
    39. Mengistu, M., L.L. Krentz, and H.D. Ou-Yang, Optical Tweezers as a Sensor for Intracellular Mechanical Properties. 2005.
    40. Raucher, D. and M.P. Sheetz, Characteristics of a membrane reservoir buffering membrane tension. Biophys J, 1999. 77(4): p. 1992-2002.
    41. Mills, J.P., et al., Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst, 2004. 1(3): p. 169-80.
    42. Ashkin, A., The study of cells by optical trapping and manipulation of living cells using infrared laser beams. ASGSB Bull, 1991. 4(2): p. 133-46.
    43. Miyoshi, H., T. Sugiura, and K. Minato, Cell Palpation System Based on a Force Measurement by Optical Tweezers for Investigation of Local Mechanical Properties of a Cell Membrane. Japanese Journal of Applied Physics, 2009. 48(12).
    44. Titushkin, I. and M. Cho, Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophysical Journal, 2006. 90(7): p. 2582-2591.
    45. Mameren, J.V., Single molecule mechanics of biopolymers:An optical tweezers study. 2002: p. 108.
    46. Fontes, A., et al., Measuring electrical and mechanical properties of red blood cells with double optical tweezers. J Biomed Opt, 2008. 13(1): p. 014001.
    47. Tolic-Norrelykke, I.M., et al., Anomalous diffusion in living yeast cells. Phys Rev Lett, 2004. 93(7): p. 078102.
    48. Lim, C.T., E.H. Zhou, and S.T. Quek, Mechanical models for living cells--a review. J Biomech, 2006. 39(2): p. 195-216.
    49. Foo, J.J., et al., Human red blood cells deformed under thermal fluid flow. Biomed Mater, 2006. 1(1): p. 1-7.
    50. Wang, J., et al., Development and Applications of an Optical Tweezer-based Microrheometer: Case Studies of Biomaterials and Living Cells. SPIE Digital Library, 2007. 6441: p. 1-11.
    51. Weiss, M., et al., Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophysical Journal, 2004. 87(5): p. 3518-3524.
    52. Guigas, G., C. Kalla, and M. Weiss, The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett, 2007. 581(26): p. 5094-8.
    53. Guigas, G., C. Kalla, and M. Weiss, Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J, 2007. 93(1): p. 316-23.
    54. Moller, W., et al., Macrophage functions measured by magnetic microparticles in vivo and in vitro. Journal of Magnetism and Magnetic Materials, 2001. 225(1-2): p. 218-225.
    55. Kirmizis, D. and S. Logothetidis, Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomedicine. 5: p. 137-45.
    56. Valentine, M.T., D.L. E., and H.D. Ou-Yang, Forces on a colloidal particle in a polymer solution: a study using optical tweezers. J. Phys.: Condens. Matter, 1996: p. 6.
    57. Verkman, A.S., Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci, 2002. 27(1): p. 27-33.
    58. Stamenovic, D., Rheological behavior of mammalian cells. Cell Mol Life Sci, 2008. 65(22): p. 3592-605.
    59. Grigorenko, A.N., et al., Nanometric optical tweezers based on nanostructured substrates. Nature Photonics, 2008. 2(6): p. 365-370.
    60. Waigh, T.A., Microrheology of complex fluids. Reports on Progress in Physics, 2005. 68(3): p. 685-742.
    61. Schmitz, J., M. Benoit, and K.E. Gottschalk, The viscoelasticity of membrane tethers and its importance for cell adhesion. Biophys J, 2008. 95(3): p. 1448-59.
    62. Kumar, S., et al., Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J, 2006. 90(10): p. 3762-73.
    63. Titushkin, I. and M. Cho, Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys J, 2006. 90(7): p. 2582-91.
    64. Hough, L.A. and Ou-Yang, H.D. , Microrheology of Soft Materials Using Oscillating Optical Traps. Optical Trapping and Manipulation of particles and Macromolecules. Chapter 10.
    65. Wang, T.H., H.S. Wang, and Y.K. Soong, Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer, 2000. 88(11): p. 2619-28.
    66. Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods Cell Biol, 1998. 55: p. 1-27.
    67. Ashkin, A., Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A, 1997. 94(10): p. 4853-60.
    68. Allersma, M.W., et al., Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J, 1998. 74(2 Pt 1): p. 1074-85.
    69. Xu, J., et al., A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. Journal of Physics D-Applied Physics, 2006. 39(20): p. 4486-4490.
    70. Vermeulen, K.C., et al., Optical trap stiffness in the presence and absence of spherical aberrations. Appl Opt, 2006. 45(8): p. 1812-9.
    71. Reihani, S.N. and L.B. Oddershede, Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt Lett, 2007. 32(14): p. 1998-2000.
    72. Valberg, P.A. and H.A. Feldman, Magnetic Particle Motions within Living Cells - Measurement of Cytoplasmic Viscosity and Motile Activity. Biophysical Journal, 1987. 52(4): p. 551-561.
    73. Yacobi, N.R., et al., Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine, 2008. 4(2): p. 139-45.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE