簡易檢索 / 詳目顯示

研究生: 廖浤鈞
Liao, Hung-Chun
論文名稱: 開發高效能次單位疫苗對抗新型冠狀病毒感染之研究
Studies of Developing High Efficacy Subunit Vaccine Against SARS-CoV-2 Infection
指導教授: 劉士任
Liu, Shih-Jen
吳夙欽
Wu, Suh-Chin
口試委員: 莊宗顯
Chuang, Tsung-Hsien
余冠儀
Yu, Guann-Yi
陳信偉
Chen, Hsin-Wei
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 105
中文關鍵詞: 新型冠狀病毒棘蛋白三聚體蛋白質次單位疫苗Th1導向的免疫反應氫氧化鋁角鯊烯乳化佐劑
外文關鍵詞: SARS-CoV-2, Trimeric spike, Protein subunit vaccine, Th1-biased response, squalene-in-water emulsion, DNA+protein combuned vaccine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嚴重特殊傳染性肺炎(COVID-19)是具有高度傳染性且致命的疾病,其致病原是一種新型冠狀病毒(SARS-CoV-2),可透過飛沫的途徑從呼吸道感染人體。自從2019年12月在中國武漢被發現後,短時間內就在世界各地造成大流行。根據世界衛生組織的統計數據,直到2020年底全球已有超過8千萬確診病例包括190萬名患者死亡。雖然當時已有安全有效的疫苗可供大規模施打,但多種新型疫苗仍存在製造技術門檻太高, 或是需要超低溫保存及運送的問題。對此,開發以蛋白質為抗原的疫苗,具有克服以上問題的優勢。然而,若是蛋白質疫苗中沒有使用能協助刺激免疫反應的佐劑,則通常效果不彰,尤其不容易產生細胞毒殺型的T細胞(CTLs)。本篇論文研究透過特定製劑的方式,使得含有棘蛋白(spike protein)的疫苗,不僅能提供有效的保護力,並能符合由世界衛生組織(World Health Organization, WHO) 提出的建議, 要求COVID-19疫苗需能產生Th1免疫反應。首先,我們設計並生產一個新型冠狀病毒的重組棘蛋白,其俱備穩定的三聚體結構,且與hACE2受體有高度的親和力。在動物試驗中,發現使用此三聚體的重組棘蛋白(S-Trimer 或 rTS) 作為抗原於三個不同劑量的條件下(0.5, 5, 20 μg), 與一種乳液形式的佐劑(SWE)混合而成的疫苗製劑,其所能誘發的免疫反應顯著優於以鋁鹽為佐劑的對照組。值得注意的是,低劑量的S-Trimer (0.5 μg)搭配SWE佐劑,所引起的免疫反應相當於使用S-Trimer較高劑量的組別,卻更傾向Th1的反應;而且能保護倉鼠免於原始病毒株的感染;其免疫倉鼠後的血清仍可以有效中和變異的病毒株(Beta與Delta)。在另一項研究中,我們發現使用重組TS蛋白質和表達TS蛋白質的質體DNA在注射前與鋁鹽混合,可增強針對棘蛋白的體液和細胞免疫反應。通過評估免疫後小鼠血清中IgG2a/IgG1抗體的比例,以及由T細胞所分泌的細胞激素,也驗證結合TS DNA疫苗與TS蛋白質及鋁鹽的組合製劑,會誘發偏向Th1的免疫反應。攻毒試驗的結果顯示,被免疫這種組合式疫苗的倉鼠可以產生有效的抗體反應,感染之後體重減輕較少,並顯著減少肺部的病毒量和肺部組織的病變。總結,使用低劑量 rTS搭配SWE佐劑,或是利用鋁鹽同步遞送蛋白質與DNA的組合式疫苗,兩者皆能成功引起俱保護效果的免疫反應,而且能產生偏向Th1的免疫反應;特別是,接種組合式疫苗還能顯著促進俱抗原特異性的CTL反應。


    The Coronavirus disease 2019 (COVID-19) is a highly contagious and lethal disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through air travel routes, it has globally and rapidly spread from Wuhan China. Till the end of 2020, this pandemic has resulted in over 83 million confirmed cases worldwide, with nearly 1.9 million deaths. Although, several vaccines against SARS-CoV-2 have been authorized and used for large-scale vaccination. The manufacturing difficulties and the storage of mRNA or viral vector vaccines at ultra-low temperatures limit global distribution. The utilization of protein subunit vaccines has proven advantageous in overcoming these obstacles, as it has been extensively studied and widely employed in numerous existing prophylactic vaccines for an extended period. Nevertheless, protein-based vaccines typically induce poor immune responses in the absence of a potent adjuvant and exhibit a limited ability to generate cytotoxic T lymphocytes (CTLs). The primary objective of this thesis is to examine the compositions of vaccines that utilize spike proteins in order to elicit immune responses that are protective and predominantly Th1-biased. Initially, a recombinant spike protein of the SARS-CoV-2 virus was engineered and synthesized using Chinese hamster ovary (CHO) cells. The resulting protein exhibited a stable trimeric structure and demonstrated a strong binding affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. The rodent studies showed that formulating this trimeric spike protein (S-Trimer or rTS) at different doses (0.5, 5, 20 ug) with a squalene-in-water emulsion (SWE) adjuvant elicited potent immunity that was superior to those induced by aluminum hydroxide (alum) adjuvant. Notably, low-dose (0.5 μg) of S-Trimer with SWE stimulates comparable immune responses that are biased toward Th1 in mice, protects hamsters from SARS-CoV-2 infection, and provides cross-neutralizing antibody activity against variants of concern (Beta and Delta strain). This study also demonstrated rTS protein and TS encoding DNA vaccine mixed with alum before injection enhances humoral and cellular immune responses. Through evaluating the IgG2a/IgG1 isotype profile and cytokine profile of the specific boosted T-cell response, it has been confirmed the combined formulation of TS DNA and protein with alum induced a Th1-biased immune response. Moreover, the viral challenge study showed that the hamsters immunized with this combined vaccine generate durable antibody responses, experience less body weight loss, and significantly reduce viral load in lung and lung lesions. In summary, either SWE adjuvating low-dose of rTS or the co-delivery of protein and DNA combined vaccine achieved protective immunity and induce a Th1-biased response; especially, the strategy of the combined vaccine significantly improves antigen-specific CTL response.

    中文摘要 I Abstract III 誌謝 V Content VI Chapter 1. Research Background, Motivation, and Aims 1 1-1. Coronavirus 1 1-2. SARS-CoV-2 2 1-3. Development of COVID-19 vaccine 3 1-4. Vaccine-induced immunity 9 1-5. Vaccine-associated enhanced disease 11 1-6. Research Motivations and Aims 13 Chapter 2. Design and production of a recombinant trimeric SARS-CoV-2 spike stabilized in a prefusion state 15 2-1. Introduction 15 2-2. Material and Methods 18 2-3. Results 21 2-4. Discussion 24 Chapter 3. Low-dose SARS-CoV-2 S-Trimer with an emulsion adjuvant induced Th1-biased protective immunity 26 3-1. Introduction 26 3-2. Material and Methods 28 3-3. Results 34 3-4 Discussion 41 Chapter 4. Codelivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1-dominant humoral and cellular immunity against SARS-CoV-2 45 4-1. Introduction 45 4-2. Materials and Methods 47 4-3. Results 51 4-4. Discussion 59 Reference 63 Figures 75 Tables 105

    1. Wertheim, J.O., et al., A case for the ancient origin of coronaviruses. J Virol, 2013. 87(12): p. 7039-45.
    2. Woo, P.C., et al., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol, 2012. 86(7): p. 3995-4008.
    3. Woo, P.C., et al., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J Virol, 2014. 88(2): p. 1318-31.
    4. Cui, J., F. Li, and Z.L. Shi, Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019. 17(3): p. 181-192.
    5. Corman, V.M., et al., Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res, 2018. 100: p. 163-188.
    6. WHO. Coronavirus (COVID-19) Dashboard. [cited 2020 December 28]; Available from: https://covid19.who.int/.
    7. Harrison, A.G., T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol, 2020. 41(12): p. 1100-1115.
    8. Pascarella, G., et al., COVID-19 diagnosis and management: a comprehensive review. J Intern Med, 2020. 288(2): p. 192-206.
    9. Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020. 181(2): p. 281-292 e6.
    10. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280 e8.
    11. Millet, J.K. and G.R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A, 2014. 111(42): p. 15214-9.
    12. WHO. COVID-19 vaccine tracker and landscape. Available from: https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines.
    13. Broadbent, A.J., et al., Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine, 2016. 34(4): p. 563-570.
    14. Vignuzzi, M., E. Wendt, and R. Andino, Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med, 2008. 14(2): p. 154-61.
    15. Tiboni, M., L. Casettari, and L. Illum, Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm, 2021. 603: p. 120686.
    16. Vandermeulen, C., et al., Long-term persistence of antibodies after one or two doses of MMR-vaccine. Vaccine, 2007. 25(37-38): p. 6672-6.
    17. Hou, J., W. Ye, and J. Chen, Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol, 2022. 13: p. 840104.
    18. Alawfi, A., Bacillus Calmette-Guerin Vaccine-Related Osteomyelitis in Immunocompetent Children in Saudi Arabia: A Narrative Review. Cureus, 2022. 14(12): p. e32762.
    19. Forni, G., A. Mantovani, and R. Covid-19 Commission of Accademia Nazionale dei Lincei, COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ, 2021. 28(2): p. 626-639.
    20. Bazin, H., A brief history of the prevention of infectious diseases by immunisations. Comp Immunol Microbiol Infect Dis, 2003. 26(5-6): p. 293-308.
    21. Barrett, P.N., et al., Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines, 2017. 16(9): p. 883-894.
    22. Tano, Y., et al., Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains. Vaccine, 2007. 25(41): p. 7041-6.
    23. Kumar, A., T.S. Meldgaard, and S. Bertholet, Novel Platforms for the Development of a Universal Influenza Vaccine. Front Immunol, 2018. 9: p. 600.
    24. Li, M., et al., COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther, 2022. 7(1): p. 146.
    25. Kiesslich, S. and A.A. Kamen, Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv, 2020. 44: p. 107608.
    26. McCann, N., et al., Viral vector vaccines. Curr Opin Immunol, 2022. 77: p. 102210.
    27. Mercado, N.B., et al., Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020. 586(7830): p. 583-588.
    28. Custers, J., et al., Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2021. 39(22): p. 3081-3101.
    29. Dicks, M.D., et al., A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One, 2012. 7(7): p. e40385.
    30. Ramasamy, M.N., et al., Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, 2021. 396(10267): p. 1979-1993.
    31. Zhu, F.C., et al., Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2020. 396(10249): p. 479-488.
    32. Hardt, K., et al., Efficacy, safety, and immunogenicity of a booster regimen of Ad26.COV2.S vaccine against COVID-19 (ENSEMBLE2): results of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Infect Dis, 2022. 22(12): p. 1703-1715.
    33. Cines, D.B. and J.B. Bussel, SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. N Engl J Med, 2021. 384(23): p. 2254-2256.
    34. Pishko, A.M., J.B. Bussel, and D.B. Cines, COVID-19 vaccination and immune thrombocytopenia. Nat Med, 2021. 27(7): p. 1145-1146.
    35. Gresele, P., et al., Interactions of adenoviruses with platelets and coagulation and the vaccine-induced immune thrombotic thrombocytopenia syndrome. Haematologica, 2021. 106(12): p. 3034-3045.
    36. Enjuanes, L., et al., Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res, 2016. 96: p. 245-286.
    37. Bill, R.M., Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol, 2015. 67(3): p. 319-28.
    38. Bayani, F., et al., An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. Prog Biophys Mol Biol, 2023. 178: p. 32-49.
    39. Heath, P.T., et al., Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med, 2021. 385(13): p. 1172-1183.
    40. Roldao, A., et al., Virus-like particles in vaccine development. Expert Rev Vaccines, 2010. 9(10): p. 1149-76.
    41. Hemann, E.A., S.M. Kang, and K.L. Legge, Protective CD8 T cell-mediated immunity against influenza A virus infection following influenza virus-like particle vaccination. J Immunol, 2013. 191(5): p. 2486-94.
    42. Tan, T.K., et al., A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun, 2021. 12(1): p. 542.
    43. Donaldson, B., et al., Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines, 2018. 17(9): p. 833-849.
    44. Krammer, F., SARS-CoV-2 vaccines in development. Nature, 2020. 586(7830): p. 516-527.
    45. van der Heijden, I., J.H. Beijnen, and B. Nuijen, Long term stability of lyophilized plasmid DNA pDERMATT. Int J Pharm, 2013. 453(2): p. 648-50.
    46. Donnelly, J.J., M.A. Liu, and J.B. Ulmer, Antigen presentation and DNA vaccines. Am J Respir Crit Care Med, 2000. 162(4 Pt 2): p. S190-3.
    47. Wang, X., et al., Development of DNA Vaccine Candidate against SARS-CoV-2. Viruses, 2022. 14(5).
    48. Wang, Z., et al., Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther, 2004. 11(8): p. 711-21.
    49. Wolff, J.A., et al., Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet, 1992. 1(6): p. 363-9.
    50. Manam, S., et al., Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology, 2000. 43(4-6): p. 273-81.
    51. Fioretti, D., S. Iurescia, and M. Rinaldi, Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov, 2014. 9(1): p. 66-82.
    52. Chavda, V.P., R. Pandya, and V. Apostolopoulos, DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines, 2021. 20(12): p. 1549-1560.
    53. Mallapaty, S., India's DNA COVID vaccine is a world first - more are coming. Nature, 2021. 597(7875): p. 161-162.
    54. Cullis, P.R. and M.J. Hope, Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol Ther, 2017. 25(7): p. 1467-1475.
    55. Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 2021. 384(5): p. 403-416.
    56. Skowronski, D.M. and G. De Serres, Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 2021. 384(16): p. 1576-1577.
    57. Cosmi, L., et al., T helper cells plasticity in inflammation. Cytometry A, 2014. 85(1): p. 36-42.
    58. Romagnani, S., Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res, 1991. 21(2): p. 152-8.
    59. Cox, R.J. and K.A. Brokstad, Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol, 2020. 20(10): p. 581-582.
    60. Weisel, F.J., et al., A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells. Immunity, 2016. 44(1): p. 116-130.
    61. Turner, J.S., et al., SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021. 596(7870): p. 109-113.
    62. Lederer, K., et al., SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity, 2020. 53(6): p. 1281-1295 e5.
    63. Fulginiti, V.A., et al., Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA, 1967. 202(12): p. 1075-80.
    64. Chin, J., et al., Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am J Epidemiol, 1969. 89(4): p. 449-63.
    65. Sridhar, S., et al., Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med, 2018. 379(4): p. 327-340.
    66. Bournazos, S., A. Gupta, and J.V. Ravetch, The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol, 2020. 20(10): p. 633-643.
    67. Acosta, P.L., M.T. Caballero, and F.P. Polack, Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease. Clin Vaccine Immunol, 2015. 23(3): p. 189-95.
    68. Brewer, J.M., et al., Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol, 1999. 163(12): p. 6448-54.
    69. Polack, F.P., et al., A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med, 2002. 196(6): p. 859-65.
    70. Delgado, M.F., et al., Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med, 2009. 15(1): p. 34-41.
    71. Iwata-Yoshikawa, N., et al., Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol, 2014. 88(15): p. 8597-614.
    72. Luo, F., et al., Evaluation of Antibody-Dependent Enhancement of SARS-CoV Infection in Rhesus Macaques Immunized with an Inactivated SARS-CoV Vaccine. Virol Sin, 2018. 33(2): p. 201-204.
    73. Houser, K.V., et al., Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS pathogens, 2017. 13(8): p. e1006565.
    74. Agrawal, A.S., et al., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother, 2016. 12(9): p. 2351-6.
    75. Ke, Z., et al., Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020. 588(7838): p. 498-502.
    76. Cai, Y., et al., Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020. 369(6511): p. 1586-1592.
    77. Henderson, R., et al., Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat Struct Mol Biol, 2020. 27(10): p. 925-933.
    78. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263.
    79. Juraszek, J., et al., Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun, 2021. 12(1): p. 244.
    80. Pallesen, J., et al., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A, 2017. 114(35): p. E7348-E7357.
    81. Liang, J.G., et al., S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nat Commun, 2021. 12(1): p. 1346.
    82. Li, T., et al., SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Emerg Microbes Infect, 2020. 9(1): p. 2076-2090.
    83. Watterson, D., et al., Preclinical development of a molecular clamp-stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2. Clin Transl Immunology, 2021. 10(4): p. e1269.
    84. Morris, A.E., et al., Incorporation of an isoleucine zipper motif enhances the biological activity of soluble CD40L (CD154). J Biol Chem, 1999. 274(1): p. 418-23.
    85. Rozanov, D.V., et al., Engineering a leucine zipper-TRAIL homotrimer with improved cytotoxicity in tumor cells. Molecular cancer therapeutics, 2009. 8(6): p. 1515-1525.
    86. Du, L., et al., A recombinant vaccine of H5N1 HA1 fused with foldon and human IgG Fc induced complete cross-clade protection against divergent H5N1 viruses. PLoS One, 2011. 6(1): p. e16555.
    87. Yang, X., R. Wyatt, and J. Sodroski, Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J Virol, 2001. 75(3): p. 1165-71.
    88. Pekarik, V., Secreted trimeric viral envelope proteins as a tool for new vaccine design and biochemical assays.
    89. Morelock, M.M., et al., Kinetic characterization of human immunodeficiency virus type 1 protease: determination of inhibitor rate constants during dynamic monomer-dimer interconversion. Arch Biochem Biophys, 1996. 328(2): p. 317-23.
    90. Du, S.X., et al., Effect of trimerization motifs on quaternary structure, antigenicity, and immunogenicity of a noncleavable HIV-1 gp140 envelope glycoprotein. Virology, 2009. 395(1): p. 33-44.
    91. Meier, S., et al., Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable beta-hairpin: atomic details of trimer dissociation and local beta-hairpin stability from residual dipolar couplings. J Mol Biol, 2004. 344(4): p. 1051-69.
    92. Harbury, P.B., et al., A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science, 1993. 262(5138): p. 1401-7.
    93. Harbury, P.B., P.S. Kim, and T. Alber, Crystal structure of an isoleucine-zipper trimer. Nature, 1994. 371(6492): p. 80-3.
    94. Sliepen, K., et al., Immunosilencing a highly immunogenic protein trimerization domain. J Biol Chem, 2015. 290(12): p. 7436-42.
    95. Chappell, K.J., et al., Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis, 2021. 21(10): p. 1383-1394.
    96. Grant, O.C., et al., Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep, 2020. 10(1): p. 14991.
    97. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020. 369(6501): p. 330-333.
    98. Zhu, X., et al., Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry, 2000. 39(37): p. 11194-204.
    99. Shi, X. and D.L. Jarvis, Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets, 2007. 8(10): p. 1116-25.
    100. Lyngse, F.P., et al., Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load. Nat Commun, 2021. 12(1): p. 7251.
    101. Planas, D., et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021. 596(7871): p. 276-280.
    102. Yu, X., et al., Reduced sensitivity of SARS-CoV-2 Omicron variant to antibody neutralization elicited by booster vaccination. Cell Discov, 2022. 8(1): p. 4.
    103. Data., O.W.i. Coronavirus (COVID-19) Vaccinations. 2022; Available from: https://ourworldindata.org/covid-vaccinations.
    104. Li, R., J. Liu, and H. Zhang, The challenge of emerging SARS-CoV-2 mutants to vaccine development. J Genet Genomics, 2021. 48(2): p. 102-106.
    105. Lai, C.C., et al., COVID-19 vaccines: concerns beyond protective efficacy and safety. Expert Rev Vaccines, 2021. 20(8): p. 1013-1025.
    106. Gupta, R.K. and E.J. Topol, COVID-19 vaccine breakthrough infections. Science, 2021. 374(6575): p. 1561-1562.
    107. Ling, Y., J. Zhong, and J. Luo, Safety and effectiveness of SARS-CoV-2 vaccines: A systematic review and meta-analysis. J Med Virol, 2021. 93(12): p. 6486-6495.
    108. Greinacher, A., et al., Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med, 2021. 384(22): p. 2092-2101.
    109. Muir, K.L., et al., Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination. N Engl J Med, 2021. 384(20): p. 1964-1965.
    110. Troiano, G. and A. Nardi, Vaccine hesitancy in the era of COVID-19. Public Health, 2021. 194: p. 245-251.
    111. Richmond, P., et al., Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet, 2021. 397(10275): p. 682-694.
    112. Collin, N. and P.M. Dubois, The Vaccine Formulation Laboratory: a platform for access to adjuvants. Vaccine, 2011. 29 Suppl 1: p. A37-9.
    113. INSTITUTE, V.F. SWE, an squalene-in-water emulsion adjuvant in open-access, for the benefit of the entire vaccine community. 2022; Available from: https://www.vaccineformulationinstitute.org/activities/swe-adjuvant/.
    114. O'Hagan, D.T., et al., The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines, 2013. 12(1): p. 13-30.
    115. Chai, K.M., et al., DNA vaccination induced protective immunity against SARS CoV-2 infection in hamsterss. PLoS Negl Trop Dis, 2021. 15(5): p. e0009374.
    116. Mintz, M.A. and J.G. Cyster, T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev, 2020. 296(1): p. 48-61.
    117. Verstegen, N.J.M., et al., System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation. Front Immunol, 2021. 12: p. 734282.
    118. Zhuang, Z., et al., Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med, 2021. 218(4).
    119. Craven, J. COVID-19 vaccine tracker. 2022; Available from: https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker.
    120. Ott, G., et al., MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol, 1995. 6: p. 277-96.
    121. Tian, J.H., et al., SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun, 2021. 12(1): p. 372.
    122. Kuo, T.Y., et al., Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep, 2020. 10(1): p. 20085.
    123. Ma, J., et al., Cryo-EM structure of S-Trimer, a subunit vaccine candidate for COVID-19. J Virol, 2021.
    124. Sekimukai, H., et al., Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol, 2020. 64(1): p. 33-51.
    125. McMahan, K., et al., Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021. 590(7847): p. 630-634.
    126. Israelow, B., et al., Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci Immunol, 2021. 6(64): p. eabl4509.
    127. Garcia-Beltran, W.F., et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021. 184(9): p. 2523.
    128. Wang, P., et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021. 593(7857): p. 130-135.
    129. Edara, V.V., et al., Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host Microbe, 2021. 29(4): p. 516-521 e3.
    130. Planas, D., et al., Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med, 2021. 27(5): p. 917-924.
    131. Wu, K., et al., mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv, 2021.
    132. Choi, A., et al., Serum Neutralizing Activity of mRNA-1273 against SARS-CoV-2 Variants. J Virol, 2021. 95(23): p. e0131321.
    133. Valleriani, F., et al., Neutralization of SARS-CoV-2 Variants by Serum from BNT162b2 Vaccine Recipients. Viruses, 2021. 13(10).
    134. Sacks, H.S., The Novavax vaccine had 90% efficacy against COVID-19 >/=7 d after the second dose. Ann Intern Med, 2021. 174(11): p. JC124.
    135. Hsieh, S.M., et al., Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 2021. 9(12): p. 1396-1406.
    136. Sheridan, C., First COVID-19 DNA vaccine approved, others in hot pursuit. Nat Biotechnol, 2021. 39(12): p. 1479-1482.
    137. Williams, J.A., Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel), 2013. 1(3): p. 225-49.
    138. Graham, B.S., Rapid COVID-19 vaccine development. Science, 2020. 368(6494): p. 945-946.
    139. Shen, K.Y., et al., Omicron-specific mRNA vaccine induced cross-protective immunity against ancestral SARS-CoV-2 infection with low neutralizing antibodies. J Med Virol, 2022.
    140. Khoshnood, S., et al., Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol, 2022. 13: p. 984536.
    141. Hobernik, D. and M. Bros, DNA Vaccines-How Far From Clinical Use? Int J Mol Sci, 2018. 19(11).
    142. Smith, T.R.F., et al., Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun, 2020. 11(1): p. 2601.
    143. Tzeng, T.T., et al., A DNA vaccine candidate delivered by an electroacupuncture machine provides protective immunity against SARS-CoV-2 infection. NPJ Vaccines, 2022. 7(1): p. 60.
    144. Brocato, R.L., et al., Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters. NPJ Vaccines, 2021. 6(1): p. 16.
    145. Lassauniere, R., et al., Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines, 2021. 6(1): p. 156.
    146. Zhang, M., et al., DNA prime-protein boost using subtype consensus Env was effective in eliciting neutralizing antibody responses against subtype BC HIV-1 viruses circulating in China. Hum Vaccin Immunother, 2012. 8(11): p. 1630-7.
    147. Hollister, K., et al., The role of follicular helper T cells and the germinal center in HIV-1 gp120 DNA prime and gp120 protein boost vaccination. Hum Vaccin Immunother, 2014. 10(7): p. 1985-92.
    148. Rosati, M., et al., Control of SARS-CoV-2 infection after Spike DNA or Spike DNA+Protein co-immunization in rhesus macaques. PLoS Pathog, 2021. 17(9): p. e1009701.
    149. Jalah, R., et al., DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques. PLoS One, 2014. 9(3): p. e91550.
    150. Li, J., et al., HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine, 2013. 31(36): p. 3747-55.
    151. Li, Y., et al., A novel DNA and protein combination COVID-19 vaccine formulation provides full protection against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect, 2021. 10(1): p. 342-355.
    152. Felber, B.K., et al., Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Rep, 2020. 31(6): p. 107624.
    153. Heidary, M., et al., A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front Microbiol, 2022. 13: p. 927306.
    154. Shi, Y., et al., Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine, 2001. 19(13-14): p. 1747-52.
    155. Kwissa, M., et al., Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response. J Mol Med (Berl), 2003. 81(8): p. 502-10.
    156. HogenEsch, H., Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine, 2002. 20 Suppl 3: p. S34-9.
    157. Wu, W.L., et al., Monoclonal antibody targeting the conserved region of the SARS-CoV-2 spike protein to overcome viral variants. JCI Insight, 2022. 7(8).
    158. Liao, H.C., et al., Low-Dose SARS-CoV-2 S-Trimer with an Emulsion Adjuvant Induced Th1-Biased Protective Immunity. Int J Mol Sci, 2022. 23(9).
    159. Liu, Y., et al., Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A, 2021. 118(12).
    160. Ulmer, J.B., et al., Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine, 1999. 18(1-2): p. 18-28.
    161. MacGregor, R.R., et al., First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis, 1998. 178(1): p. 92-100.
    162. Temperton, N.J., et al., Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. J Med Virol, 2003. 70(1): p. 86-90.
    163. Garg, R., et al., Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain. Mol Immunol, 2017. 85: p. 166-173.
    164. Wang, S., et al., Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate. Vaccine, 2000. 18(13): p. 1227-35.
    165. Liang, Z.W., et al., [Enhancement of a hepatitis B DNA vaccine potency using aluminum phosphate in mice]. Zhonghua Gan Zang Bing Za Zhi, 2004. 12(2): p. 79-81.
    166. Nguyen, T.P., et al., Safety and immunogenicity of Nanocovax, a SARS-CoV-2 recombinant spike protein vaccine: Interim results of a double-blind, randomised controlled phase 1 and 2 trial. Lancet Reg Health West Pac, 2022. 24: p. 100474.

    QR CODE