簡易檢索 / 詳目顯示

研究生: 賴耀梓
Lai,Yao-Zih
論文名稱: 物理氣相沉積氣體比於超薄氮化鈦及氮化鉭薄膜機械性質調變之研究
On the Mechanical Properties of Ultrathin Titanium Nitride and Tantalum Nitride Films under Different Gas Ratios of PVD Process
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 賴梅鳳
Lai, Mei-Feng
邱一
Chiu, Yi
鄒慶福
Tsou, Ching-Fu
魏拯華
Wei, Jeng-Hua
鄭照霖
Cheng, Chao-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 164
中文關鍵詞: 氮化鈦氮化鉭物理氣相沉積楊氏係數殘留應力熱膨脹係數
外文關鍵詞: Titanium Nitride, Tantalum Nitride, Physical Vapor Deposition Process, Young’s modulus, Residual stress, Coefficients of thermal expansion 
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著3C電子產品需求遽增以及物聯網 (Internet of Things, IoT)、大數據 (Big Data) 和人工智慧 (Artificial Intelligence, AI) 等技術的快速發展,小尺寸、傳輸速度快、高效能及低能耗等高性能特性已儼然成為微機電系統 (Micro-Electro Mechanical Systems, MEMS) 與半導體發展的主流。這些特性與早期晶片設計中較大體積和較慢傳輸速度形成對比。然而,尺寸縮小及性能需求的提高,為製程開發帶來了諸多限制和挑戰。在黃光製程中,需要使用波長更短的極紫外光 (EUV) 來實現更細的線寬極限。在薄膜製程方面,晶片尺寸的限縮使得每層堆疊的厚度需要變得更薄,不僅使得薄膜厚度及均勻度控制上的難度,更影響薄膜的片阻及電性。此外,若材料間熱膨脹係數 (CTE) 差異過大,當元件受熱後亦會造成更顯著的問題,進而導致薄膜破裂或元件損壞。
    為了解決這些問題,本研究聚焦於氮化鈦 (Titanium Nitride, TiNx) 和鉭化氮 (Tantalum Nitride, TaNx) 兩種薄膜,這兩種薄膜在半導體及微機電製程中廣泛用作擴散阻障層 (Barrier layer)、銅導線種晶層 (Seed layer)和黏著層 (Adhesive layer)。利用直流磁控濺射的物理氣相沉積 (Physical Vapor Deposition, PVD) 技術,以不同氣體比 (RN = N2/(N2+Ar))沉積厚度約10nm的超薄薄膜,並在製程參數中調整氮氣 (N2) 和氬氣 (Ar) 的氣體比例,以調變這兩種超薄膜的機械性質,包括楊氏係數 (Young’s modulus)、殘留應力 (Residual Stress) 和熱膨脹係數 (Coefficients of thermal expansion, CTE)。在本研究實驗中為驗證此方法的可行性,將RN值為0.3、0.5、0.8之 TiNx 薄膜和 RN 值為 0.3、0.4、0.5之 TaNx 薄膜沉積於以微機電技術製作的 SiO2 懸臂樑上,使其形成複合測試懸臂樑。由實驗萃取結果得知,透過調變PVD 製程中的氣體比例,TiNx 及TaNx薄膜其楊氏係數、殘留應力及熱膨脹係數皆產生了顯著變化,為此本研究提供了一種簡便的方法和指南,讓研究開發者得以根據特定應用需求量身定制 TiNx 和 TaNx 薄膜。


    With the rapid increase in demand for 3C electronic products and the fast-paced advancements in technologies such as the Internet of Things (IoT), Big Data, and Artificial Intelligence (AI), high performance characteristics such as compact size, fast transmission speed, high efficiency, and low energy consumption have become widely adopted in the development of micro-electromechanical systems (MEMS) and semiconductors. These characteristics contrast with the larger size and slower transmission speeds of earlier chip designs. However, miniaturization and increased performance demands have introduced numerous limitations and challenges in process development. In photolithography processes, shorter wavelength extreme ultraviolet (EUV) lithography is required to achieve finer line width limits. In thin film processes, the reduction in chip size necessitates thinner layers for each stack, which not only increases the difficulty in precisely controlling film thickness but also impacts the uniformity, sheet resistance, and electrical properties of the films. Furthermore, differences in coefficients of thermal expansion (CTE) between materials may lead to more pronounced effects upon heating, potentially resulting in film cracking or device failure.

    To address these issues, this study focuses on two types of thin films, Titanium Nitride (TiNx) and Tantalum Nitride (TaNx), which are widely used in semiconductor and MEMS processes as diffusion barrier layers, copper seed layers, and adhesive layers. Ultrathin films of approximately 10 nm thickness were deposited using Physical Vapor Deposition (PVD) with DC magnetron sputtering, and the gas ratio of nitrogen (N2) and argon (Ar) was adjusted to modulate the mechanical properties of these ultrathin films, including Young’s modulus, residual stress, and coefficients of thermal expansion (CTE). In the experimental setup, TiNx and TaNx films with three different gas ratios (RN = N2/(N2+Ar)) were extracted. To validate the feasibility of this approach, TiNx films with RN values of 0.3, 0.5, and 0.8, and TaNx films with RN values of 0.3, 0.4, and 0.5 were deposited on SiO2 cantilever beams fabricated using MEMS technology, forming composite test cantilevers. Results from the experiment reveal significant changes in Young’s modulus, residual stress, and CTE of the TiNx and TaNx films due to variations in gas ratio during the PVD process, thereby verifying that this study provides a straightforward method and guideline for users to customize TiNx and TaNx thin films according to specific application requirements.

    摘要………. I Abstract….. III 誌謝………. V 目錄…. IX 圖目錄 XII 表目錄 XIX 第一章 緒論 1 1-1 前言… 1 1-2 文獻回顧 5 1-2-1 薄膜楊氏係數之萃取 7 1-2-2 薄膜殘留應力之萃取 11 1-2-3 薄膜熱膨脹係數之萃取 22 1-3 研究動機與目的 25 1-4 全文架構 30 第二章 微奈米結構平台與鍍膜機制 50 2-1 微奈米結構平台之製作 50 2-1-1 底切現象探討 51 2-2 奈米薄膜鍍膜機制 53 2-2-1 長射程物理氣相沉積薄膜技術 56 2-2-2 直流反應式磁控濺鍍技術 58 第三章 薄膜機械性質萃取與參數設計 74 3-1 薄膜萃取流程 74 3-2 薄膜參數設計 76 3-3 薄膜密度萃取 77 3-4 薄膜幾何尺寸與成分分析 78 第四章 薄膜楊氏係數之萃取 93 4-1 理論分析 94 4-2 實驗與萃取結果 96 4-3 分析與討論 98 第五章 薄膜殘留應力之萃取 116 5-1 理論分析 116 5-2 實驗與萃取之結果 119 5-3 分析與討論 121 第六章 薄膜熱膨脹係數之萃取 133 6-1 理論分析 133 6-2 實驗與萃取之結果 135 6-3 分析與討論 137 第七章 論文貢獻與未來工作 148 7-1 論文貢獻 148 7-2 未來工作 149 參考文獻…. 152 論文著作…. 164

    參考文獻
    [1] V. Bonu, M. Jeevitha, V. P. Kumar, S. Bysakh, and H.C. Barshilia, “Ultra-thin multilayered erosion resistant Ti/TiN coatings with stress absorbing layers,” Applied Surface Science, Vol. 478, pp. 872-881, 2019.
    [2] S.B. Ghantasala, and S. Sharma, “Magnetron sputtered thin films based on transition metal nitride: structure and properties,” Phys. Status Solidi A, Vol. 220, Issue 2, pp. 2200229, 2023.
    [3] S. Zhang, and W. Zhu, “TiN coating of tool steels: a review,” Journal of Materials Processing Technology, Vol. 39, pp. 165-177,1993.
    [4] R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, “Adhesion and debonding of multi-layer thin film structures,” Engineering Fracture Mechanics, Vol. 61, pp. 141-162, 1998.
    [5] N. Arshi, J. Lu, Y. K. Joo, C. G. Lee, J. H. Yoon, and F. Ahmed, “Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow,” Materials Chemistry and Physics, Vol. 134, pp. 839-844, 2012.
    [6] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films, Vol 513, pp. 1-24, 2006.
    [7] S.Das, S.Guha, R.Ghadai,and A.Sharma, “Influence of nitrogen gas over microstructural, vibrational and mechanical properties of CVD Titanium nitride (TiN) thin film coating,” Ceramics International, Vol. 47, Issue 12, pp. 16809-16819, 2021.
    [8] J.H. Kim, H.J. Kil, S. Lee, and J.W. Park, “Interfacial delamination at multilayer thin films in semiconductor devices,” American Chemical Society, Vol. 7, Issue 29, pp. 25219-25228, 2022.
    [9] B.J. Lee, Y.S. Kim, D.W. Seo, and J.W. Choi, “The effect of deposition temperature of TiN thin film deposition using thermal atomic layer deposition,” Coatings 2023, Vol. 13, Issue 13, pp. 104, 2023.
    [10] M. Roy, N. R. Mucha, S. Fialkova, and D. Kumar, “Effect of thickness on metal-to-semiconductor transition in 2-dimensional TiN thin films,” AIP Advances, Vol. 11, pp. 0452204, 2021.
    [11] M. Roy, K. Sarkar, J. Som, M.A. Pfeifer, V. Craciun, J.D. Schall, S. Aravamudhan, F.W. Wise, and D. Kumar, “Modulation of structural, electronic, and optical properties of titanium nitride thin films by regulated in situ oxidation,” ACS Applied Materials & Interfaces, Vol. 15, Issue 3, pp. 4733-4742, 2023.
    [12] O.O. Abegunde, M. Lahouij, N. Jaghar, H. Larhlimi, M. Makha, and J. Alami, “Synergistic effect of deposition temperature and substrate bias on structural, mechanical, stability and adhesion of TiN thin film prepared by reactive HiPIMS,” Ceramics International, Vol. 50, Issue 7, Part A, pp. 10593-10601, 2024.
    [13] I. Gablech, E. D. Głowacki, “State-of-the-art electronic materials for thin films in bioelectronics,” Advanced Electronic Materials, Vol. 9, Issue 8, pp. 2300258, 2023.
    [14] M. Wittmer, and H. Melchior, “Applications of TiN thin film in silicon device technology,” Thin Solid Films, Vol. 93, pp. 397-405, 1982.
    [15] N. Ghobadi, M. Ganji, C. Luna, A. Arman, and A. Ahmadpourian, “Effects of substrate temperature on the properties of sputtered TiN thin films,” Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 2800-2808, 2016.
    [16] W.P. Guo, R. Mishra, C.W. Cheng, B.H. Wu, L.J. Chen, M.T. Lin, and S. Gwo, “Titanium nitride epitaxial films as a plasmonic material platform: Alternative to gold,” ACS Photonics, Vol. 6, Issue 8, pp. 1848-1854, 2019.
    [17] Ł. Łapaj, and J. Rozwalka. “Retrieval analysis of TiN (titanium nitride) coated knee replacements: coating wear and degradation in vivo,” J Biomed Mater Res B Appl Biomater, pp. 1251-1261, 2020.
    [18] R.D Castillo, K. Chochlidakis, P. Galindo-Moreno, and C. Ercoli, “Titanium nitride coated implant abutments: From technical aspects and soft tissue biocompatibility to clinical applications. A Literature Review,” J Prosthodont, pp. 571-578, 2022.
    [19] T.I Selinder, M.E Sjöstrand, M Nordin, M Larsson, Å Östlund, and S Hogmark, “Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining,” Surface and Coatings Technology, Vol 105, Issues 1–2, pp. 51-55, 1998,
    [20] N.Takahiro, “Mechanical property measurement of micro/nanoscale materials for MEMS: A Review,” IEEJ Trans Elec Electron Eng, Vol.18, Issue 3, pp. 308-324, 2023.
    [21] A.K. Rajak, R. Dash, A. Kumari, and A.S. Bhattacharyya, “Sensitivity in nanomechanical pedestal MEMS cantilever,” Materials Today Communications, Vol. 38, pp. 107891, 2024.
    [22] R.A. Araujo, J. Yoon, X. Zhang, and H. Wang, “Cubic TaN diffusion barrier for Cu interconnects using an ultra-thin TiN seed layer,” Thin Solid Films, Vol. 516, pp. 5103-5106, 2008.
    [23] H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, and T. Kunio, “A dual-metal gate CMOS technology using nitrogen-concentration-controlled TiNx film,” IEEE Transactions on Electron Devices, Vol. 48, pp. 2363-2369, 2001.
    [24] N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, A. O'Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, Vol. 578, pp.31-37, 2015.
    [25] P. Patsalas, C. Charitidis, and S. Logothetidis, “The Effect of substrate temperature and biasing on the mechanical properties and structure of sputtered Titanium Nitride thin films,” Surface and Coatings Technology, Vol. 125, pp. 335-340, 2000.
    [26] E. Török, A.J. Perry, L. Chollet, and W.D. Sproul, “Young’s modulus of TiN, TiC, ZrN and HfN,” Thin Solid Films, Vol. 153, pp. 37-43, 1987.
    [27] C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer,” Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides,” Journal of Alloys and Compounds, Vol. 265, Issues 1-2, pp. 215-233, 1998.
    [28] S.W. King, “Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects,” ECS Journal of Solid State Science and Technology, Vol. 4, pp. N3029-3047, 2015.
    [29] E.J. Herrera-Jimenez, E. Bousser, T. Schmitt, J.E. Klemberg-Sapieha, and L. Martinu, “Effect of plasma interface treatment on the microstructure, residual stress profile, and mechanical properties of PVD TiN coatings on Ti-6Al-4V substrates,” Surface and Coatings Technology, Vol. 413, pp. 127058, 2021.
    [30] R. Ali, M. Sebastiani, and E. Bemporad, “Influence of Ti-TiN multilayer PVD-coatings design on residual stresses and adhesion,” Materials & Design, Vol. 75, pp. 47-56, 2015.
    [31] S. Zak, C.O.W. Trost, P. Kreiml, and M. J. Cordill, “Accurate measurement of thin film mechanical properties using nanoindentation,” Journal of Materials Research, Vol. 37, pp. 1373–1389, 2022.
    [32] D.J. Kim, Y.S. Choi, H.H. Choi, S.J Kwon, T.W. Lee, H. Choi, I. Kang, J. H. Park, and Byung Hee Hong, “Degradation Protection of Color Dyes Encapsulated by Graphene Barrier Films,” Chemistry of Materials, Vol. 31, pp. 7173-7177, 2019.
    [33] S.S. Roy, M.S. Arnold, “Improving graphene diffusion barriers via stacking multiple layers and grain size engineering,” Adv. Funct. Mater., Vol 23, pp. 3638-3644, 2013.
    [34] J. Koike, M. Hosseini, D. Ando and Y. Sutou, “New contact metallization scheme for FinFET and beyond,” 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp. 169-171, 2018.
    [35] T.W.B. Riyadi, D.Setiadhi, A. D. Anggono, W.A. Siswanto,and H.H. Al-Kayiem, “Analysis of mechanical and thermal stresses due to TiN coating of Fe substrate by physical vapor deposition,” Forces in Mechanics, Vol. 4, pp. 100042, 2021.
    [36] C. Saringer, C. Kickinger, F. Munnik, C. Mitterer, N. Schalk, and M. Tkadletz, “Thermal expansion of magnetron sputtered TiCxN1-x coatings studied by high-temperature X-ray diffraction,” Thin Solid Films, Vol. 688, 2019.
    [37] H. Guckel, T. Randazzo, and D. W. Burns, “A simple technique for the determination of mechanical strain in thin films with applications to polysilicon”, Journal of Applied Physics, Vol 57, pp. 1671-1675 ,1985.
    [38] H. Bückle, “Use of hardness test to determine other material properties,” The Science of Hardness Testing and Its Research Applications. American Society for Metals, pp. 453-494,1973.
    [39] S.J. Bull, “Microstructure and indentation response of TiN coatings: The effect of measurement method”, Thin Solid Films, Vol. 688, 2019.
    [40] K.E. Petersen, and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, Vol. 50, pp. 6761-6766, 1979.
    [41] W.N. Sharpe Jr, J. Pulskamp, D.S. Gianola, C. Eberl, R.G. Polcawich, and R.J. Thompson, “Strain measurements of silicon dioxide microspecimens by digital imaging processing,” Experimental Mechanics, Vol. 47, pp. 649-658, 2007.
    [42] M.G. Allen, M. Mehregany, R.T. Howe, and S.D. Senturia, “Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films,” Appl. Phys. Lett., Vol. 51, 241-243, 1987.
    [43] J.J. Vlassak, and W.D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, Vol 7, pp. 3242-3249, 1992.
    [44] W. Fang and J. A. Wickert, “Post buckling of micromachined beams,” J. Micromech. Microeng, Vol. 4, pp. 116-122, 1994.
    [45] H. Guckel, D. W. Burns, C. C. G. Visser, H. A. C. Tilmans and D. Deroo, “Fine-grained polysilicon films with built-in tensile strain,” IEEE Transactions on Electron Devices, Vol. 35, no. 6, pp. 800-801, 1988.
    [46] B.P. van Drieënhuizen, J.F.L. Goosen, P.J. French, and R.F. Wolffenbuttel, “Comparison of techniques for measuring both compressive and tensile stress in thin films,” Sensors and Actuators A: Physical, Vol. 37-38, pp.756-765, 1993.
    [47] M.Huff, “Review Paper: residual stresses in deposited thin-film material layers for Micro- and Nano-Systems Manufacturing,” Micromachines 2022, Vol. 13, 2022.
    [48] W. Fang, and J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” J. Micromech. Microeng, Vol. 6, pp. 301-309. 1996.
    [49] W. Fang and J.A Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” J. Micromech. Microeng, Vol. 5, pp. 276-281, 1995.
    [50] G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Proceeding of the Royal Society of London, Vol.82, Issue 553, pp. 172-175, 1909.
    [51] L. Lin, A. P. Pisano, and R. T. Howe, “A micro strain gauge with mechanical amplifier,” Journal of Microelectromechanical Systems, Vol. 6, 1997.
    [52] B. D. Rothrock and R. K. Kirby, “An apparatus for measuring thermal expansion at elevated temperatures,” J. Res. NBS, Vol. 71C, 1967.
    [53] Pan Bing, Xie Hui-min, Hua Tao, and Anand Asundi,” Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polymer Testing, Vol. 28, pp. 75-83, 2009.
    [54] J. B. Austin, “A Vacuum Apparatus for Measuring Thermal Expansion at Elevated Temperatures, with Measurements on Platinum, Gold, Magnesium and Zinc,” Physics, Vol. 3, pp. 240-267,1932.
    [55] C.L. Cheng, M.H. Tsai, and W. Fang, “Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers,” J. Micromech. Microeng, Vol. 25, 2015.
    [56] T.B. Hook, “Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets,” Joule, Vol. 2, Issue 1, pp.1-4, 2018.
    [57] S.S. Rao, Mechanical Vibrations, 4th ed., Pearson Prentice Hall, 2004.
    [58] J.C. Marshall, D.L. Herman, P.T. Vernier, D.L. DeVoe, and M. Gaitan, “Young’s modulus measurements in standard IC CMOS processes using MEMS test structure,” IEEE Electron Device Letters, Vol. 28, pp. 960-963, 2007.
    [59] F. P. Beer, E. R. Johnston Jr., and J. T. Dewolf, Mechanics of Materials, 4th ed., Boston, McGraw-Hill, 2006.
    [60] P. Prieto and R.E. Kirby, “X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter deposited TiN films and their oxidation properties,” Vac.Sci.Tech.A, Vol. 13, pp. 2819-2826, 1995.
    [61] A. Karimi, O.R Shojaei, T. Kruml, and J.L Martin, “Characterisation of TiN thin films using the bulge test and the nanoindentation technique,” Thin Solid Films, Vol. 308-309, pp. 334-339, 1997.
    [62] J.F. Han, Y.-H., Kim, S., & Kwon, S.-H. CRC Materials Science and Engineering Handbook, 4th ed., Taylor & Francis, 2015.
    [63] D. Demirskyi, O. Vasylkiv, and K. Yoshimi, “Allotropic strengthening and in situ phase transformations during ultra-high-temperature flexure of bulk tantalum nitride,” Materials Science and Engineering: A, Vol. 826, 2021.
    [64] L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A: Physical, Vol. 35, pp. 153-159, 1992.
    [65] O. Norimasa, M. Hase, R. Mori, M. Hayamizu, H. Murotani, K. Miyazaki, M. Takashiri, “Determination of group velocity based on nanoindentation using Si and SiO2/Si wafers,” AIP Advances, pp. 075216, Vol. 11, 2021.
    [66] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?”, IEEE Journal of Microelectromechanical Systems, Vol. 19, Issue 2, pp. 229-238, 2010.
    [67] D. D. Kumar, N. Kumar, S. Kalaiselvam, S. Dash, and R. Jayavel, “Micro-tribo-mechanical properties of nanocrystalline TiN thin films for small scale device applications,” Tribology International, Vol. 88, pp. 25-30, 2015.
    [68] A.J. Perry, “A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN,” Thin Solid Films, Vol.193–194, Part 1, pp. 463-471, 1990.
    [69] X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt, W. Gissler, “Elastic constants and hardness of ion‐beam‐sputtered TiNx films measured by Brillouin scattering and depth‐sensing indentation,” J. Appl. Phys. Vol. 69, pp. 3053–3057,1991.
    [70] F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Méndez, J.A. Mendes, E. Alves, Ph. Goudeau, J.P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow, and J. de Rijk, “Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films,” Surface and Coatings Technology, Vol. 191, pp.317-323, 2005.
    [71] S. Timoshenko, “Analysis of bi-metal thermostats,” Journal of the Optical Society of America, Vol. 11, pp. 233-255, 1925.

    QR CODE