研究生: |
黃宥豪 Huang, Yu-Hao |
---|---|
論文名稱: |
Study on the metal Nanocrystals embedded in the Silicon Oxide and Nitride dielectrics 金屬奈米點埋在氧化矽和氮化矽之研究 |
指導教授: |
葉鳳生
Yeh, Fon-Shan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 奈米點 |
外文關鍵詞: | nanpcrystal |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的非揮發性記憶體是利用複晶矽浮動閘極(floating gate)作為載子儲存的單元,而在元件尺寸持續微縮下,此結構將面臨一些瓶頸。為了克服尺寸極限,近年來衍生出之奈米晶體非揮發性記憶體,即利用半導體或金屬奈米點作為電荷儲存的單元,可以減少穿隧氧化層的厚度,而不損失可靠性,進而降低操作電壓及操作速度增快。
在此論文中,我們利用共蒸鍍方式將鎳金屬埋在氧化系和氮化矽的介電質中,並且藉由快速熱退火系統來減少熱預算進而降低擴散程度,當選擇不同的退火溫度時,能造成奈米點結構上的改變,我們認為退火的溫度是最主要的影響,同時我們也有研究在濺鍍鈷化矽的薄膜過程中通入氣體(O2/N2),可以發現不只退火溫度會影響奈米點的形成機制,在濺鍍過程中通入的氧氣流量也扮演一個重要的腳色。
Chapter 1
[1.1] S. Lai, Future Trends of Nonvolatile Memory Technology, December 2001.
[1.2] S. Aritome, IEEE IEDM Tech. Dig., 2000, p.763.
[1.3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, vol. 85, pp. 1248–1271, Aug. 1997.
[1.4] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, vol. 91, NO.4, April 2003.
[1.5] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288 (1967).
[1.6] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.7] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.8] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits & devices, 16, 22 (2000).
[1.9] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[1.10] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.11] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
[1.12] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[1.13] H.A.R. Wegener, A.J. Lincoln, H.C. Pao, M.R. O’Connell, and R.E. Oleksiak, The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.
[1.14] T.Y.Chan, K.K.Young and C.Hu, “A true single-transistor oxide- nitride-oxide EEPROM device”. IEEE Electron Device Letters, vol.8, no.3, pp.93-95, 1987.
[1.15] M.K. Cho and D.M.Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters, pp.399-401, Vol.21, No.8, 2000.
[1.16] I. Fijiwara, H.Aozasa, K.Nomoto, S.Tanaka and T.Kobayashi, “ High speed program/erase sub 100nm MONOS memory cell”, Proc. 18th Non-Volatile Semiconductor Memory Workshop, p. 75, 2001.
[1.17] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech. Dig. , 9A-2, 113 (1997).
[1.18] C. Tung-Sheng, W. Kuo-Hong, C. Hsien, and K. Chi-Hsing, “Performance improvement of SONOS memory by bandgap engineering of charge-trappinglayer”, IEEE Electron Device Lett., vol. 25, no. 3, pp.205–207, Mar. 2004.
[1.19] Y. N. Tan, W. K. Chim, and B. J. Cho, W. K. Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer”, IEEE Transations on Eelectron Devices, vol.51, no.7, July 2004.
[1.20] Min She, Hideki Takeuchi, and Tsu-Jae King, “Silicon-Nitride as a Tunnel Dielectric for Improved SONOS-Type Flash Memory”, IEEE Electron Device Letters, vol. 24, no. 5, MAY 2003.
[1.21] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect”, Applied Physics Letters 87, 073510 (2005)
[1.22] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, and Ping-Hung Yeh, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels”, Applied Physics Letters 90, 122111 (2007)
[1.23] Peiqi Xuan, Min She, Bruce Harteneck, Alex Liddle, Jefkey Bokor, and Tsu-Jae King, “FinFET SONOS Flash Memory for Embedded Applications”, IEEE IEDM 609-612 (2003).
[1.24] Tzu-Hsuan Hsu, Hang Ting Lue, Ya-Chin King, Jung-Yu Hsieh, Erh-Kun Lai, Kuang-Yeu Hsieh, and Chih-Yuan Lu, “A High-Performance Body-Tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-Type Flash Memory”, IEEE Electron Device Letters, vol. 28, no. 5, MAY 2007.
[1.25] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
[1.26] J De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002.
[1.27] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, IEEE Trans. Electron Devices 49, 1392 (2002).
[1.28] Y. C. King, T. J. King, and C. Hu, IEEE Trans. Electron Devices 48, 696 (2001)
[1.29] Y. Shi et al., in Proceedings of the First Joint Symposium on Opto- and Microelectronic Devices and Circuits, 2000, pp. 142–145.
[1.30] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang, Microelectron. J. 34, 71 (2003).
[1.31] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE Trans. Electron Devices, VOL. 49, NO. 9, SEPTEMBER 2002.
[1.32] Chungho Lee, Udayan Ganguly, Venkat Narayanan, and Tuo-Hung Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, vol. 26, NO. 12, DECEMBER 2005.
[1.33] Jong Jin Leea, Yoshinao Harada Jung, Woo Pyun, and Dim-Lee Kwong “Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications”, Applied Physics Letters 86, 103505 (2005)
[1.34] Wei-Ren Chen, Ting-Chang Chang, Po-Tsun Liu, Po-Sun Lin, Chun-Hao Tu, and Chun-Yen Chang “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application”, Applied Physics Letters 90, 112108 (2007)
[1.35] S. K. Samanta, Won Jong Yoo, and Ganesh Samudra, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters 87, 113110 (2005)
[1.36] S. K. Samanta, P. K. Singh, Won Jong Yoo, Ganesh Samudra, and Yee-Chia Yeo, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals”, IEEE (2005)
[1.37] Shan Tang, Chuanbin Mao, Yueran Liu, and Sanjay K. Banerjee “Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication”, IEEE Trans. on Electron Letters, vol. 54, no. 3, March 2007.
[1.38] L. Guo, E. Leobandung, and S. Y. Chou, “Si single-electron MOS memory with nanoscale floating-gate and narrow channel,” in Int. Electron Devices Meeting Tech. Dig., 1996, pp. 955–956.
[1.39] N. Takahashi, H. Ishikuro, and T. Hiramoto, “A directional current switch using silicon electron transistors controlled by charge injection into silicon nano-crystal floating dots,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 371–374.
[1.40] J. Wahl, H. Silva, A. Gokirmak, A. Kumar, J. J. Welser, and S. Tiwari, “Write, erase and storage times in nanocrystal memories and the role of interface states,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 375–378.
Chapter 2
[2.1] Chih-Yuan and Chin-Chieh Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004.
[2.2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.3] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.
[2.4] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika and S. Satoh, “Device characteristics of 0.35 贡m P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming”, IEEE Trans. Electron Devices, Vol. 46, pp. 1866-1871, 1999.
[2.5] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001)
[2.6] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)
[2.7] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp Pack and Manu Tech part A., 17, 390 (1994)
[2.8] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
[2.9] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of
Electron Devices., 49, 1606 (2002)
[2.10] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
[2.11] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
[2.12] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973)
[2.13] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979)
[2.14] C. Hu, IEDM Tech. Dig., p.22. (1979)
[2.15] S. Tam, P. K. Ko, C. Hu, and R. Muller, IEEE Trans. Elec. Dev., 29, 1740 (1982)
[2.16] I. C. Chen, C. Kaya, and J. Paterson, IEDM Tech. Dig., p.263 (1989)
[2.17] I. C Chen, D. J. Coleman, and C. W. Teng, IEEE Elec. Dev. Lett., 10, 297 (1989)
[2.18] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, IEDM Tech. Dig., p.279 (1995)
[2.19] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL.2, NO.4, DECEMBER 2003.
[2.20] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.21] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical model of reliability and scaling projections for Flash memories,” in IEDM Tech. Dig., 2001, pp.32.2.1–32.2.4.
[2.22] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti,“New technique for fast characterization of SILC distribution in Flash arrays,” in Proc. IRPS, 2001, pp. 73–80.
[2.23] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash memories after program/erase cycling,” in Proc. IRPS, 2002, pp. 1–6.
[2.24] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement in germanium nanocrystals,” Applied Physics Letters, vol.77, pp.1182-1184 (2000)
[2.25] T. Takagahara and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect- gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992.
[2.26] J.D.Jackson, “Classcial Electrodynamics”, published by John Wiley & Sons, 1999.
Chapter 3
[3.1] D. Kahng and S. M. Sze, Bell Syst. Tech. J., 46, 1288 (1967)
[3.2] J. D. Le, S.H. Hur, and J.D. Choi, “Effects of Floating-Gate Interference on NAND Flash Memory Cell Operation”, IEEE Electron Device Lett. Vol. 23, No. 5,(2002)
[3.3] B. Govoreanu, D.P. Brunco, J. Van Houdt, “Scaling down the interpoly dielectric for next generation Flash memory: Challenges and opportunities”, Solid-State Electron, vol. 49, p. 1841 (2005)
[3.4] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W Chan, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE IEDM Tech. Dig., pp. 521-524, (1995)
[3.5] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication“, IEEE Tran. Electron Devices, vol. 49, pp. 1606 (2002)
[3.6] A. Lauwers, A. Steegen, M. de Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex IMEC, Kapeldreef 75, 3001 Leuven, Belgium “Materials aspects, electrical performance, and scalability of Ni silicide towards sub-0.13 μm technologies”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures- November 2001 – Vol. 19, Issue 6, pp. 2026
[3.7] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase”, J. Appl. Phys. 87, 609 (2000)
[3.8] C. Lee, A. G. Seetharam, and E. C. Kan “Operational and Reliability Comparison of Discrete-Storage Nonvolatile Memories: Advantages of Single- and Double-Layer Metal Nanocrystals,” in IEDM Tech. Dig., pp. 22.6.1- 22.6.4 (2003)
[3.9] S. K. Samanta1, P. K. Singh1, W. J. Yoo, G. Samudra, Y. C. Yeo, L. K. Bera, and N. Balasubramanian, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals” in IEDM Tech. Dig., pp. 170-173 (2005)
[3.10] F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, U. S. Chen, Y. C. Yu, J. Y. Lin, S. M. Sze and J. C. Lou “Using double layer CoSi2 nanocrystals to improve the memory effects of nonvolatile memory devices” Appl. Phys. Lett. 90, 212108 (2007)
[3.11] T.I. Koranyi, et al., J. Catal. 116, 422 (1989).
[3.12] Anderson C.R., J. Vac. Sci. Technol. 20, 617 (1982)
[3.13] Hartley M.A., Appl. Phys. Lett. 54, 1510 (1989)
Chapter 4
[4.1] “Oxidation behavior of cobalt” Applied Surface Science Volumes 121-122,2 November 1997, Page 213-2
[4.2] Zheng-Wu Fu “Electrochemical reaction of nanocrystalline Co3O4 thin film with Lithium” Solid State Ionics 170 (2004) 105-109