研究生: |
林台文 Lin, Tai-Wen |
---|---|
論文名稱: |
人類嗜酸性白血球陽離子蛋白肝素結合區域之功能鑑定與分子機制 Functional Characterization and Molecular Mechanisms of Heparin-binding Motifs of Eosinophil Cationic Protein |
指導教授: |
張大慈
Chang, Dah-Tsyr |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 人類嗜酸性白血球陽離子蛋白 、肝素 |
外文關鍵詞: | eosinophil cationic protein, heparin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類嗜酸性血球在發炎反應發生時釋放之嗜酸性血球陽離子蛋白(ECP)可對抗致病源的入侵,其在人類先天性免疫中扮演重要的角色。此外,嗜酸性血球陽離子蛋白的呈現與呼吸道過敏性疾病高度相關,因此成為臨床檢測氣喘的指標分子。近年的研究發現嗜酸性血球陽離子蛋白與細胞表面的硫酸乙醯肝素結合進入支氣管表皮細胞內,進而造成細胞毒殺作用,並鑑定L3區域為主要肝素結合位。然而蛋白質與肝素結合的強度至今還未明確測定。本研究利用等熱滴定熱卡計測得重組嗜酸性血球陽離子蛋白與肝素間交互作用的解離常數為1.3 x 10-6 M,並發現突變的重組嗜酸性血球陽離子蛋白失去L3的肝素結合區後,仍然保存部份的肝素結合能力,顯示其它肝素結合區域存在的可能。經由等熱滴定熱卡計及肝素親合性管柱層析分析點突變的重組嗜酸性血球陽離子蛋白,證實在一級序列中兩個鹼性胺基酸群集區域都具有肝素結合之活性。另外,利用熱滴定熱卡計測得嗜酸性血球陽離子蛋白與五種肝素衍生物反應熱量變化,以及此五種衍生物對於嗜酸性血球陽離子蛋白與肝素膠質的競爭能力,證實嗜酸性血球陽離子蛋白與肝素之間的結合之高度的選擇性與N基硫酸化修飾關係密切。
Eosinophil cationic protein (ECP) is secreted from activated eosinophil at inflammatory site, and it functions in immune system to against pathogens such as bacteria and virus. ECP shows highly correlation with airway allergic diseases and has been used as biomarker for asthma in clinical. Recent study revealed that the cytotoxic activity of ECP toward Beas-2B human bronchial epithelial cell line depended on cell surface heparan sulfate proteoglycans (HSPGs) and the heparin binding motif of ECP with a basic amino acid cluster located at loop 3 (L3) is identified. However, the binding affinity between ECP and heparin is not fully elucidated. In this study, the binding constant between ECP and heparin was quantified by isothermal titration calorimeter (ITC), and the dissociation constant (Kd) was 1.3 x 10-6 M. A mutated MBP-ECP lacking of heparin binding L3 remained a weaker binding ability with a Kd value of 7.4 x 10-6 M, indicating the existence of additional heparin binding region in ECP. MBP-ECP single point mutants were used for identification of key heparin binding residues by ITC and affinity column chromatography. Two basic amino acid clusters were verified to be a novel heparin binding path on ECP. In addition, five heparin derivatives with difference modifications were used for determining the specificity of heparin binding activity of MBP-ECP. The results obtained from ITC and competitive heparin affinity chromatography indicated that the N-sufation on heparin predominantly contributed in ECP binding.
1. Hileman, R.E., J.R. Fromm, J.M. Weiler, and R.J. Linhardt, Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays, 1998. 20(2): p. 156-67.
2. Gandhi, N.S. and R.L. Mancera, The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des, 2008. 72(6): p. 455-82.
3. Jacobsson, K.G. and U. Lindahl, Degradation of heparin proteoglycan in cultured mouse mastocytoma cells. Biochem J, 1987. 246(2): p. 409-15.
4. Linhardt, R.J., S.A. Ampofo, J. Fareed, D. Hoppensteadt, J.B. Mulliken, and J. Folkman, Isolation and characterization of human heparin. Biochemistry, 1992. 31(49): p. 12441-5.
5. Kreuger, J., D. Spillmann, J.P. Li, and U. Lindahl, Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol, 2006. 174(3): p. 323-7.
6. Olson, S.T. and Y.J. Chuang, Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases. Trends Cardiovasc Med, 2002. 12(8): p. 331-8.
7. Kramer, K.L. and H.J. Yost, Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet, 2003. 37: p. 461-84.
8. Asundi, V.K., B.F. Keister, R.C. Stahl, and D.J. Carey, Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp Cell Res, 1997. 230(1): p. 145-53.
9. David, G., Heparan sulphate proteoglycans of human fibroblasts. Biochem Soc Trans, 1990. 18(5): p. 805-7.
10. Karthikeyan, L., P. Maurel, U. Rauch, R.K. Margolis, and R.U. Margolis, Cloning of a major heparan sulfate proteoglycan from brain and identification as the rat form of glypican. Biochem Biophys Res Commun, 1992. 188(1): p. 395-401.
11. Chan, F.L., S. Inoue, and C.P. Leblond, Localization of heparan sulfate proteoglycan in basement membranes. J Histochem Cytochem, 1992. 40(11): p. 1807-8.
12. Ha, Y.W., B.T. Jeon, S.H. Moon, H. Toyoda, T. Toida, R.J. Linhardt, and Y.S. Kim, Characterization of heparan sulfate from the unossified antler of Cervus elaphus. Carbohydr Res, 2005. 340(3): p. 411-6.
13. Fransson, L.A., Glypicans. Int J Biochem Cell Biol, 2003. 35(2): p. 125-9.
14. Bass, M.D., M.R. Morgan, and M.J. Humphries, Syndecans shed their reputation as inert molecules. Sci Signal, 2009. 2(64): p. pe18.
15. Opal, S.M., C.M. Kessler, J. Roemisch, and S. Knaub, Antithrombin, heparin, and heparan sulfate. Crit Care Med, 2002. 30(5 Suppl): p. S325-31.
16. Whitelock, J.M. and R.V. Iozzo, Heparan sulfate: a complex polymer charged with biological activity. Chem Rev, 2005. 105(7): p. 2745-64.
17. van Putten, J.P. and S.M. Paul, Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J, 1995. 14(10): p. 2144-54.
18. Kardami, E., T.W. Pearson, R.P. Beecroft, and R.R. Fandrich, Identification of basic fibroblast growth factor-like proteins in African trypanosomes and Leishmania. Mol Biochem Parasitol, 1992. 51(2): p. 171-81.
19. Flynn, S.J. and P. Ryan, The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. J Virol, 1996. 70(3): p. 1355-64.
20. Chen, Y., T. Maguire, R.E. Hileman, J.R. Fromm, J.D. Esko, R.J. Linhardt, and R.M. Marks, Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med, 1997. 3(8): p. 866-71.
21. Sawitzky, D., Protein-glycosaminoglycan interactions: infectiological aspects. Med Microbiol Immunol, 1996. 184(4): p. 155-61.
22. Vives, R.R., A. Imberty, Q.J. Sattentau, and H. Lortat-Jacob, Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J Biol Chem, 2005. 280(22): p. 21353-7.
23. Alvarez-Dominguez, C., J.A. Vazquez-Boland, E. Carrasco-Marin, P. Lopez-Mato, and F. Leyva-Cobian, Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun, 1997. 65(1): p. 78-88.
24. Cardin, A.D. and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9(1): p. 21-32.
25. McEwen, B.J., Eosinophils: a review. Vet Res Commun, 1992. 16(1): p. 11-44.
26. McLaren, D.J., J.R. McKean, I. Olsson, P. Venges, and A.B. Kay, Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol, 1981. 3(4): p. 359-73.
27. McLaren, D.J., C.G. Peterson, and P. Venge, Schistosoma mansoni: further studies of the interaction between schistosomula and granulocyte-derived cationic proteins in vitro. Parasitology, 1984. 88 ( Pt 3): p. 491-503.
28. Domachowske, J.B., K.D. Dyer, A.G. Adams, T.L. Leto, and H.F. Rosenberg, Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res, 1998. 26(14): p. 3358-63.
29. Lehrer, R.I., D. Szklarek, A. Barton, T. Ganz, K.J. Hamann, and G.J. Gleich, Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol, 1989. 142(12): p. 4428-34.
30. Erjefalt, J.S. and C.G. Persson, New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med, 2000. 161(6): p. 2074-85.
31. Tanaka, H., M. Komai, K. Nagao, M. Ishizaki, D. Kajiwara, K. Takatsu, G. Delespesse, and H. Nagai, Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol, 2004. 31(1): p. 62-8.
32. Shen, H.H., F. Xu, G.S. Zhang, S.B. Wang, and W.H. Xu, CCR3 monoclonal antibody inhibits airway eosinophilic inflammation and mucus overproduction in a mouse model of asthma. Acta Pharmacol Sin, 2006. 27(12): p. 1594-9.
33. Guilpain, P., L. Guillevin, and L. Mouthon, [Eosinophil granule cationic proteins: eosinophil activation markers]. Rev Med Interne, 2006. 27(5): p. 406-8.
34. Yamada, Y., H. Nakamura, T. Adachi, S. Sannohe, H. Oyamada, H. Kayaba, J. Yodoi, and J. Chihara, Elevated serum levels of thioredoxin in patients with acute exacerbation of asthma. Immunol Lett, 2003. 86(2): p. 199-205.
35. Reimert, C.M., P. Venge, A. Kharazmi, and K. Bendtzen, Detection of eosinophil cationic protein (ECP) by an enzyme-linked immunosorbent assay. J Immunol Methods, 1991. 138(2): p. 285-90.
36. Venge, P., J. Bystrom, M. Carlson, L. Hakansson, M. Karawacjzyk, C. Peterson, L. Seveus, and A. Trulson, Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86.
37. Sorrentino, S., Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci, 1998. 54(8): p. 785-94.
38. Olsson, I. and P. Venge, Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells. Scand J Haematol, 1972. 9(3): p. 204-14.
39. Venge, P., The eosinophil granulocyte in allergic inflammation. Pediatr Allergy Immunol, 1993. 4(4 Suppl): p. 19-24.
40. Peterson, C.G., H. Jornvall, and P. Venge, Purification and characterization of eosinophil cationic protein from normal human eosinophils. Eur J Haematol, 1988. 40(5): p. 415-23.
41. Fan, T.C., S.L. Fang, C.S. Hwang, C.Y. Hsu, X.A. Lu, S.C. Hung, S.C. Lin, and M.D. Chang, Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem, 2008. 283(37): p. 25468-74.
42. Fan, T.C., H.T. Chang, I.W. Chen, H.Y. Wang, and M.D. Chang, A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95.
43. Tellinghuisen, J., Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J Phys Chem B, 2007. 111(39): p. 11531-7.
44. Tellinghuisen, J., A study of statistical error in isothermal titration calorimetry. Anal Biochem, 2003. 321(1): p. 79-88.
45. Tellinghuisen, D.J. and E.J. Nowak, The inability to ignore auditory distractors as a function of visual task perceptual load. Percept Psychophys, 2003. 65(5): p. 817-28.
46. Dews, I., W.T. Wiseman, I. al-Khawaja, J. Stephens, and M. VandenBurg, A comparison of single doses of lisinopril and enalapril in hypertension. J Hum Hypertens, 1989. 3 Suppl 1: p. 35-9.
47. Pierce, M.M., C.S. Raman, and B.T. Nall, Isothermal titration calorimetry of protein-protein interactions. Methods, 1999. 19(2): p. 213-21.
48. Dasso, L.L. and C.W. Taylor, Heparin and other polyanions uncouple alpha 1-adrenoceptors from G-proteins. Biochem J, 1991. 280 ( Pt 3): p. 791-5.
49. Gupta, V.K. and L.R. Gowda, Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Biochimie, 2008. 90(5): p. 749-61.
50. Merenmies, J., R. Pihlaskari, J. Laitinen, J. Wartiovaara, and H. Rauvala, 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem, 1991. 266(25): p. 16722-9.
51. Futamura, M., P. Dhanasekaran, T. Handa, M.C. Phillips, S. Lund-Katz, and H. Saito, Two-step mechanism of binding of apolipoprotein E to heparin: implications for the kinetics of apolipoprotein E-heparan sulfate proteoglycan complex formation on cell surfaces. J Biol Chem, 2005. 280(7): p. 5414-22.
52. Lauritzen, B., J. Lykkesfeldt, R. Djurup, H. Flodgaard, and O. Svendsen, Effects of heparin-binding protein (CAP37/azurocidin) in a porcine model of Actinobacillus pleuropneumoniae-induced pneumonia. Pharmacol Res, 2005. 51(6): p. 509-14.
53. Mummery, R.S., B. Mulloy, and C.C. Rider, The binding of human betacellulin to heparin, heparan sulfate and related polysaccharides. Glycobiology, 2007. 17(10): p. 1094-103.
54. Ruppert, R., E. Hoffmann, and W. Sebald, Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem, 1996. 237(1): p. 295-302.
55. Bugs, M.R., R.K. Bortoleto-Bugs, and M.L. Cornelio, The interaction between heparin and Lys49 phospholipase A2 reveals the natural binding of heparin on the enzyme. Int J Biol Macromol, 2005. 37(1-2): p. 21-7.
56. Chandonnet, L., K.D. Roberts, A. Chapdelaine, and P. Manjunath, Identification of heparin-binding proteins in bovine seminal plasma. Mol Reprod Dev, 1990. 26(4): p. 313-8.
57. Mitsunaga, K., J.H. Itadani, T. Shikanai, H. Tateno, Y. Ikehara, J. Hirabayashi, H. Narimatsu, and T. Angata, Human C21orf63 is a heparin-binding protein. J Biochem, 2009.
58. Spijkers, P.P., C.V. Denis, A.M. Blom, and P.J. Lenting, Cellular uptake of C4b-binding protein is mediated by heparan sulfate proteoglycans and CD91/LDL receptor-related protein. Eur J Immunol, 2008. 38(3): p. 809-17.
59. Nascimento, F.D., C.C. Rizzi, I.L. Nantes, I. Stefe, B. Turk, A.K. Carmona, H.B. Nader, L. Juliano, and I.L. Tersariol, Cathepsin X binds to cell surface heparan sulfate proteoglycans. Arch Biochem Biophys, 2005. 436(2): p. 323-32.
60. San Antonio, J.D., M.J. Karnovsky, S. Gay, R.D. Sanderson, and A.D. Lander, Interactions of syndecan-1 and heparin with human collagens. Glycobiology, 1994. 4(3): p. 327-32.
61. Pangburn, M.K., M.A. Atkinson, and S. Meri, Localization of the heparin-binding site on complement factor H. J Biol Chem, 1991. 266(25): p. 16847-53.
62. Antalik, M., M. Bona, Z. Gazova, and A. Kuchar, Spectrophotometric detection of the interaction between cytochrome c and heparin. Biochim Biophys Acta, 1992. 1100(2): p. 155-9.
63. Vanpouille, C., A. Denys, M. Carpentier, R. Pakula, J. Mazurier, and F. Allain, Octasaccharide is the minimal length unit required for efficient binding of cyclophilin B to heparin and cell surface heparan sulphate. Biochem J, 2004. 382(Pt 2): p. 733-40.
64. Fukuhara, N., J.A. Howitt, S.A. Hussain, and E. Hohenester, Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J Biol Chem, 2008. 283(23): p. 16226-34.
65. Campbell, E.J. and C.A. Owen, The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem, 2007. 282(19): p. 14645-54.
66. Levy-Adam, F., G. Abboud-Jarrous, M. Guerrini, D. Beccati, I. Vlodavsky, and N. Ilan, Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem, 2005. 280(21): p. 20457-66.
67. Olsson, A.K., I. Johansson, H. Akerud, B. Einarsson, R. Christofferson, T. Sasaki, R. Timpl, and L. Claesson-Welsh, The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization. Cancer Res, 2004. 64(24): p. 9012-7.
68. Chu, Y., R. Piper, S. Richardson, Y. Watanabe, P. Patel, and D.D. Heistad, Endocytosis of extracellular superoxide dismutase into endothelial cells: role of the heparin-binding domain. Arterioscler Thromb Vasc Biol, 2006. 26(9): p. 1985-90.
69. Muhl, L., K. Hersemeyer, K.T. Preissner, T. Weimer, and S.M. Kanse, Structure-function analysis of factor VII activating protease (FSAP): sequence determinants for heparin binding and cellular functions. FEBS Lett, 2009. 583(12): p. 1994-8.
70. Zhao, M., T. Abdel-Razek, M.F. Sun, and D. Gailani, Characterization of a heparin binding site on the heavy chain of factor XI. J Biol Chem, 1998. 273(47): p. 31153-9.
71. Yakovlev, S., S. Gorlatov, K. Ingham, and L. Medved, Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry, 2003. 42(25): p. 7709-16.
72. Heegaard, N.H., S.I. Hansen, and J. Holm, A novel specific heparin-binding activity of bovine folate-binding protein characterized by capillary electrophoresis. Electrophoresis, 2006. 27(5-6): p. 1122-7.
73. Sidis, Y., A.L. Schneyer, and H.T. Keutmann, Heparin and activin-binding determinants in follistatin and FSTL3. Endocrinology, 2005. 146(1): p. 130-6.
74. Tan, K., M. Duquette, J.H. Liu, J. Lawler, and J.H. Wang, The crystal structure of the heparin-binding reelin-N domain of f-spondin. J Mol Biol, 2008. 381(5): p. 1213-23.
75. Li, Y., X. Liang, S. van Drunen Littel-van den Hurk, S. Attah-Poku, and L.A. Babiuk, Glycoprotein Bb, the N-terminal subunit of bovine herpesvirus 1 gB, can bind to heparan sulfate on the surfaces of Madin-Darby bovine kidney cells. J Virol, 1996. 70(3): p. 2032-7.
76. Liang, A., X. Liu, Y. Du, K. Wang, and B. Lin, Further characterization of the binding of heparin to granulocyte colony-stimulating factor: importance of sulfate groups. Electrophoresis, 2008. 29(6): p. 1286-90.
77. Liang, A., Y. Du, K. Wang, and B. Lin, Quantitative investigation of the interaction between granulocyte-macrophage colony-stimulating factor and heparin by capillary zone electrophoresis. J Sep Sci, 2006. 29(11): p. 1637-41.
78. Razi, N. and U. Lindahl, Biosynthesis of heparin/heparan sulfate. The D-glucosaminyl 3-O-sulfotransferase reaction: target and inhibitor saccharides. J Biol Chem, 1995. 270(19): p. 11267-75.
79. Raab, G. and M. Klagsbrun, Heparin-binding EGF-like growth factor. Biochim Biophys Acta, 1997. 1333(3): p. F179-99.
80. Hampton, B.S., D.R. Marshak, and W.H. Burgess, Structural and functional characterization of full-length heparin-binding growth associated molecule. Mol Biol Cell, 1992. 3(1): p. 85-93.
81. de Lima, C.S., M.A. Marques, A.S. Debrie, E.C. Almeida, C.A. Silva, P.J. Brennan, E.N. Sarno, F.D. Menozzi, and M.C. Pessolani, Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett, 2009. 292(2): p. 162-9.
82. Furukawa, T., M. Ozawa, R.P. Huang, and T. Muramatsu, A heparin binding protein whose expression increases during differentiation of embryonal carcinoma cells to parietal endoderm cells: cDNA cloning and sequence analysis. J Biochem, 1990. 108(2): p. 297-302.
83. Mor, V., T. Das, M. Bhattacharjee, and T. Chatterjee, Protein tyrosine phosphorylation of a heparin-binding sperm membrane mitogen (HBSM) is associated with capacitation and acrosome reaction. Biochem Biophys Res Commun, 2007. 352(2): p. 404-9.
84. Yu, W. and J.S. Hill, Mapping the heparin-binding domain of human hepatic lipase. Biochem Biophys Res Commun, 2006. 343(2): p. 659-65.
85. Zhou, H., J.R. Casas-Finet, R. Heath Coats, J.D. Kaufman, S.J. Stahl, P.T. Wingfield, J.S. Rubin, D.P. Bottaro, and R.A. Byrd, Identification and dynamics of a heparin-binding site in hepatocyte growth factor. Biochemistry, 1999. 38(45): p. 14793-802.
86. Zarnegar, R., S. Muga, R. Rahija, and G. Michalopoulos, Tissue distribution of hepatopoietin-A: a heparin-binding polypeptide growth factor for hepatocytes. Proc Natl Acad Sci U S A, 1990. 87(3): p. 1252-6.
87. Liu, S., D. Hoke, J. Julian, and D.D. Carson, Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS. J Biol Chem, 1997. 272(41): p. 25856-62.
88. Srivastava, P.N. and A.A. Farooqui, Heparin-sepharose affinity chromatography for purification of bull seminal-plasma hyaluronidase. Biochem J, 1979. 183(3): p. 531-7.
89. Kuang, Z., S. Yao, D.W. Keizer, C.C. Wang, L.A. Bach, B.E. Forbes, J.C. Wallace, and R.S. Norton, Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J Mol Biol, 2006. 364(4): p. 690-704.
90. Beattie, J., K. Phillips, J.H. Shand, M. Szymanowska, D.J. Flint, and G.J. Allan, Molecular recognition characteristics in the insulin-like growth factor (IGF)-insulin-like growth factor binding protein -3/5 (IGFBP-3/5) heparin axis. J Mol Endocrinol, 2005. 34(1): p. 163-75.
91. Abrass, C.K., A.K. Berfield, and D.L. Andress, Heparin binding domain of insulin-like growth factor binding protein-5 stimulates mesangial cell migration. Am J Physiol, 1997. 273(6 Pt 2): p. F899-906.
92. Vorup-Jensen, T., L. Chi, L.C. Gjelstrup, U.B. Jensen, C.A. Jewett, C. Xie, M. Shimaoka, R.J. Linhardt, and T.A. Springer, Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin. J Biol Chem, 2007. 282(42): p. 30869-77.
93. Perez Sanchez, H., K. Tatarenko, M. Nigen, G. Pavlov, A. Imberty, H. Lortat-Jacob, J. Garcia de la Torre, and C. Ebel, Organization of human interferon gamma-heparin complexes from solution properties and hydrodynamics. Biochemistry, 2006. 45(44): p. 13227-38.
94. Fasciano, S., B. Hutchins, I. Handy, and R.C. Patel, Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J, 2005. 272(6): p. 1425-39.
95. Krieger, E., E. Geretti, B. Brandner, B. Goger, T.N. Wells, and A.J. Kungl, A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Proteins, 2004. 54(4): p. 768-75.
96. Hrtska, S.C., M.M. Kemp, E.M. Munoz, O. Azizad, M. Banerjee, C. Raposo, J. Kumaran, P. Ghosh, and R.J. Linhardt, Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry, 2007. 46(10): p. 2697-706.
97. Abedini, A., S.M. Tracz, J.H. Cho, and D.P. Raleigh, Characterization of the heparin binding site in the N-terminus of human pro-islet amyloid polypeptide: implications for amyloid formation. Biochemistry, 2006. 45(30): p. 9228-37.
98. Pixley, R.A., Y. Lin, I. Isordia-Salas, and R.W. Colman, Fine mapping of the sequences in domain 5 of high molecular weight kininogen (HK) interacting with heparin and zinc. J Thromb Haemost, 2003. 1(8): p. 1791-8.
99. Di Biase, A.M., A. Pietrantoni, A. Tinari, R. Siciliano, P. Valenti, G. Antonini, L. Seganti, and F. Superti, Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. J Med Virol, 2003. 69(4): p. 495-502.
100. Hozumi, K., N. Suzuki, Y. Uchiyama, F. Katagiri, Y. Kikkawa, and M. Nomizu, Chain-specific heparin-binding sequences in the laminin alpha chain LG45 modules. Biochemistry, 2009. 48(23): p. 5375-81.
101. Ragg, H., T. Ulshofer, and J. Gerewitz, Glycosaminoglycan-mediated leuserpin-2/thrombin interaction. Structure-function relationships. J Biol Chem, 1990. 265(36): p. 22386-91.
102. Heinzelmann, M. and H. Bosshart, Heparin binds to lipopolysaccharide (LPS)-binding protein, facilitates the transfer of LPS to CD14, and enhances LPS-induced activation of peripheral blood monocytes. J Immunol, 2005. 174(4): p. 2280-7.
103. Celie, J.W., E.D. Keuning, R.H. Beelen, A.M. Drager, S. Zweegman, F.L. Kessler, R. Soininen, and J. van den Born, Identification of L-selectin binding heparan sulfates attached to collagen type XVIII. J Biol Chem, 2005. 280(29): p. 26965-73.
104. Knaus, H.G., T. Moshammer, K. Friedrich, H.C. Kang, R.P. Haugland, and H. Glossman, In vivo labeling of L-type Ca2+ channels by fluorescent dihydropyridines: evidence for a functional, extracellular heparin-binding site. Proc Natl Acad Sci U S A, 1992. 89(8): p. 3586-90.
105. Rathore, D., T.F. McCutchan, D.N. Garboczi, T. Toida, M.J. Hernaiz, L.A. LeBrun, S.C. Lang, and R.J. Linhardt, Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry, 2001. 40(38): p. 11518-24.
106. Algermissen, B., J.C. Laubscher, F. Bauer, and B.M. Henz, Purification of mast cell proteases from murine skin. Exp Dermatol, 1999. 8(5): p. 413-8.
107. Krzystek-Korpacka, M., M. Matusiewicz, and T. Banas, [Structure and function of midkine, a novel heparin-binding growth factor]. Postepy Hig Med Dosw (Online), 2006. 60: p. 591-601.
108. Tersariol, I.L., C.P. Dietrich, and H.B. Nader, Interaction of heparin with myosin ATPase: possible involvement with the hemorrhagic activity and a correlation with antithrombin III high affinity-heparin molecules. Thromb Res, 1992. 68(3): p. 247-58.
109. Zilka, A., G. Landau, O. Hershkovitz, N. Bloushtain, A. Bar-Ilan, F. Benchetrit, E. Fima, T.H. van Kuppevelt, J.T. Gallagher, S. Elgavish, and A. Porgador, Characterization of the heparin/heparan sulfate binding site of the natural cytotoxicity receptor NKp46. Biochemistry, 2005. 44(44): p. 14477-85.
110. Kallapur, S.G. and R.A. Akeson, The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res, 1992. 33(4): p. 538-48.
111. Wang, Y., Z. Chen, X. Guan, H. Song, X. Wu, and Y. Liu, Recombinant human heparin-binding neurite-promoting factor expressed with yeast stimulates neurites outgrowth. Chin Med J (Engl), 2002. 115(9): p. 1352-7.
112. Wolpe, S.D., G. Davatelis, B. Sherry, B. Beutler, D.G. Hesse, H.T. Nguyen, L.L. Moldawer, C.F. Nathan, S.F. Lowry, and A. Cerami, Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med, 1988. 167(2): p. 570-81.
113. Vander Kooi, C.W., M.A. Jusino, B. Perman, D.B. Neau, H.D. Bellamy, and D.J. Leahy, Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci U S A, 2007. 104(15): p. 6152-7.
114. Sampath, T.K., N. Muthukumaran, and A.H. Reddi, Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc Natl Acad Sci U S A, 1987. 84(20): p. 7109-13.
115. Bohlen, P., T. Muller, P. Gautschi-Sova, U. Albrecht, C.G. Rasool, M. Decker, A. Seddon, V. Fafeur, I. Kovesdi, and P. Kretschmer, Isolation from bovine brain and structural characterization of HBNF, a heparin-binding neurotrophic factor. Growth Factors, 1991. 4(2): p. 97-107.
116. Kamerzell, T.J., S.B. Joshi, D. McClean, L. Peplinskie, K. Toney, D. Papac, M. Li, and C.R. Middaugh, Parathyroid hormone is a heparin/polyanion binding protein: binding energetics and structure modification. Protein Sci, 2007. 16(6): p. 1193-203.
117. Smith, C.D., D. Wen, S.L. Mooberry, and K.J. Chang, Inhibition of phosphatidylinositol 4-phosphate kinase by heparin. A possible mechanism for the antiproliferative effects of heparin. Biochem J, 1992. 281 ( Pt 3): p. 803-8.
118. Valnickova, Z., S.V. Petersen, S.B. Nielsen, D.E. Otzen, and J.J. Enghild, Heparin binding induces a conformational change in pigment epithelium-derived factor. J Biol Chem, 2007. 282(9): p. 6661-7.
119. Feyzi, E., F. Lustig, G. Fager, D. Spillmann, U. Lindahl, and M. Salmivirta, Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem, 1997. 272(9): p. 5518-24.
120. Mikelis, C. and E. Papadimitriou, Heparin-binding protein pleiotrophin: an important player in the angiogenic process. Connect Tissue Res, 2008. 49(3): p. 149-52.
121. Fairhead, M., S.M. Kelly, and C.F. van der Walle, A heparin binding motif on the pro-domain of human procathepsin L mediates zymogen destabilization and activation. Biochem Biophys Res Commun, 2008. 366(3): p. 862-7.
122. Yi, L., L. Xiaomei, F. Hui, Z. Yingcheng, L. Dan, and W. Ying, Determination of binding constant and binding region of programmed cell death 5-heparin by capillary zone electrophoresis. J Chromatogr A, 2007. 1143(1-2): p. 284-7.
123. Simonis, D., J. Fritzsche, S. Alban, and G. Bendas, Kinetic analysis of heparin and glucan sulfates binding to P-selectin and its impact on the general understanding of selectin inhibition. Biochemistry, 2007. 46(20): p. 6156-64.
124. Shields, B., J. Mills, R. Ghildyal, P. Gooley, and J. Meanger, Multiple heparin binding domains of respiratory syncytial virus G mediate binding to mammalian cells. Arch Virol, 2003. 148(10): p. 1987-2003.
125. Calvete, J.J., Z. Dostalova, L. Sanz, K. Adermann, H.H. Thole, and E. Topfer-Petersen, Mapping the heparin-binding domain of boar spermadhesins. FEBS Lett, 1996. 379(3): p. 207-11.
126. Kishimoto, S., S. Nakamura, H. Hattori, F. Oonuma, Y. Kanatani, Y. Tanaka, Y. Mori, Y. Harada, M. Tagawa, and M. Ishihara, Human stem cell factor (SCF) is a heparin-binding cytokine. J Biochem, 2009. 145(3): p. 275-8.
127. Fermas, S., F. Gonnet, A. Sutton, N. Charnaux, B. Mulloy, Y. Du, F. Baleux, and R. Daniel, Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology, 2008. 18(12): p. 1054-64.
128. Sibille, N., A. Sillen, A. Leroy, J.M. Wieruszeski, B. Mulloy, I. Landrieu, and G. Lippens, Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Biochemistry, 2006. 45(41): p. 12560-72.
129. Jang, J.H., J.H. Hwang, C.P. Chung, and P.H. Choung, Identification and kinetics analysis of a novel heparin-binding site (KEDK) in human tenascin-C. J Biol Chem, 2004. 279(24): p. 25562-6.
130. Bruel, A., M. Touhami-Carrier, A. Thomaidis, and C. Legrand, Thrombospondin-1 (TSP-1) and TSP-1-derived heparin-binding peptides induce promyelocytic leukemia cell differentiation and apoptosis. Anticancer Res, 2005. 25(2A): p. 757-64.
131. Tossavainen, H., T. Pihlajamaa, T.K. Huttunen, E. Raulo, H. Rauvala, P. Permi, and I. Kilpelainen, The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Protein Sci, 2006. 15(7): p. 1760-8.
132. McCaffrey, T.A., D.J. Falcone, and B. Du, Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol, 1992. 152(2): p. 430-40.
133. Finotti, P. and S. Manente, Heparin-induced structural and functional alterations of bovine trypsin. Biochim Biophys Acta, 1994. 1207(1): p. 80-7.
134. Mahoney, D.J., B. Mulloy, M.J. Forster, C.D. Blundell, E. Fries, C.M. Milner, and A.J. Day, Characterization of the interaction between tumor necrosis factor-stimulated gene-6 and heparin: implications for the inhibition of plasmin in extracellular matrix microenvironments. J Biol Chem, 2005. 280(29): p. 27044-55.
135. Ho, Y., J.C. Hsiao, M.H. Yang, C.S. Chung, Y.C. Peng, T.H. Lin, W. Chang, and D.L. Tzou, The oligomeric structure of vaccinia viral envelope protein A27L is essential for binding to heparin and heparan sulfates on cell surfaces: a structural and functional approach using site-specific mutagenesis. J Mol Biol, 2005. 349(5): p. 1060-71.
136. Yamazaki, Y., Y. Tokunaga, K. Takani, and T. Morita, Identification of the heparin-binding region of snake venom vascular endothelial growth factor (VEGF-F) and its blocking of VEGF-A165. Biochemistry, 2005. 44(24): p. 8858-64.
137. Adachi, T., T. Matsushita, Z. Dong, A. Katsumi, T. Nakayama, T. Kojima, H. Saito, J.E. Sadler, and T. Naoe, Identification of amino acid residues essential for heparin binding by the A1 domain of human von Willebrand factor. Biochem Biophys Res Commun, 2006. 339(4): p. 1178-83.
138. Colombres, M., J.P. Henriquez, G.F. Reig, J. Scheu, R. Calderon, A. Alvarez, E. Brandan, and N.C. Inestrosa, Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol, 2008. 216(3): p. 805-15.
139. Fukushima, T., T. Adachi, and K. Hirano, The heparin-binding site of human xanthine oxidase. Biol Pharm Bull, 1995. 18(1): p. 156-8.
140. Casanova, J.C., J. Kuhn, K. Kleesiek, and C. Gotting, Heterologous expression and biochemical characterization of soluble human xylosyltransferase II. Biochem Biophys Res Commun, 2008. 365(4): p. 678-84.
141. Capila, I., V.A. VanderNoot, T.R. Mealy, B.A. Seaton, and R.J. Linhardt, Interaction of heparin with annexin V. FEBS Lett, 1999. 446(2-3): p. 327-30.
142. Dong, J., C.A. Peters-Libeu, K.H. Weisgraber, B.W. Segelke, B. Rupp, I. Capila, M.J. Hernaiz, L.A. LeBrun, and R.J. Linhardt, Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry, 2001. 40(9): p. 2826-34.
143. Goncalves, E., E. Kitas, and J. Seelig, Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 2005. 44(7): p. 2692-702.
144. Kuschert, G.S., F. Coulin, C.A. Power, A.E. Proudfoot, R.E. Hubbard, A.J. Hoogewerf, and T.N. Wells, Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry, 1999. 38(39): p. 12959-68.
145. Klocek, G. and J. Seelig, Melittin interaction with sulfated cell surface sugars. Biochemistry, 2008. 47(9): p. 2841-9.
146. Ziegler, A. and J. Seelig, Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J, 2004. 86(1 Pt 1): p. 254-63.
147. Goncalves, E., E. Kitas, and J. Seelig, Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin. Biochemistry, 2006. 45(9): p. 3086-94.
148. Fromm, J.R., R.E. Hileman, J.M. Weiler, and R.J. Linhardt, Interaction of fibroblast growth factor-1 and related peptides with heparan sulfate and its oligosaccharides. Arch Biochem Biophys, 1997. 346(2): p. 252-62.
149. Wang, J. and D.L. Rabenstein, Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin. Biochemistry, 2006. 45(51): p. 15740-7.
150. Gleich, G.J., D.A. Loegering, M.P. Bell, J.L. Checkel, S.J. Ackerman, and D.J. McKean, Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A, 1986. 83(10): p. 3146-50.
151. Hamann, K.J., R.M. Ten, D.A. Loegering, R.B. Jenkins, M.T. Heise, C.R. Schad, L.R. Pease, G.J. Gleich, and R.L. Barker, Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics, 1990. 7(4): p. 535-46.
152. Margalit, H., N. Fischer, and S.A. Ben-Sasson, Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem, 1993. 268(26): p. 19228-31.
153. Lohman, T.M. and D.P. Mascotti, Thermodynamics of ligand-nucleic acid interactions. Methods Enzymol, 1992. 212: p. 400-24.
154. Krilleke, D., A. DeErkenez, W. Schubert, I. Giri, G.S. Robinson, Y.S. Ng, and D.T. Shima, Molecular mapping and functional characterization of the VEGF164 heparin-binding domain. J Biol Chem, 2007. 282(38): p. 28045-56.
155. Sugaya, N., H. Habuchi, N. Nagai, S. Ashikari-Hada, and K. Kimata, 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem, 2008. 283(16): p. 10366-76.
156. Kamimura, K., T. Koyama, H. Habuchi, R. Ueda, M. Masu, K. Kimata, and H. Nakato, Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol, 2006. 174(6): p. 773-8.
157. Fromm, J.R., R.E. Hileman, E.E. Caldwell, J.M. Weiler, and R.J. Linhardt, Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys, 1995. 323(2): p. 279-87.
158. Fromm, J.R., R.E. Hileman, E.E. Caldwell, J.M. Weiler, and R.J. Linhardt, Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys, 1997. 343(1): p. 92-100.
159. Brickman, Y.G., M.D. Ford, J.T. Gallagher, V. Nurcombe, P.F. Bartlett, and J.E. Turnbull, Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J Biol Chem, 1998. 273(8): p. 4350-9.
160. Aikawa, J., K. Grobe, M. Tsujimoto, and J.D. Esko, Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem, 2001. 276(8): p. 5876-82.
161. Lyon, M. and J.T. Gallagher, Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion. Matrix Biol, 1998. 17(7): p. 485-93.
162. Gallagher, J.T., J.E. Turnbull, and M. Lyon, Heparan sulphate proteoglycans: molecular organisation of membrane--associated species and an approach to polysaccharide sequence analysis. Adv Exp Med Biol, 1992. 313: p. 49-57.
163. Esko, J.D. and U. Lindahl, Molecular diversity of heparan sulfate. J Clin Invest, 2001. 108(2): p. 169-73.
164. Ledin, J., W. Staatz, J.P. Li, M. Gotte, S. Selleck, L. Kjellen, and D. Spillmann, Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem, 2004. 279(41): p. 42732-41.
165. Griffin, C.C., R.J. Linhardt, C.L. Van Gorp, T. Toida, R.E. Hileman, R.L. Schubert, 2nd, and S.E. Brown, Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res, 1995. 276(1): p. 183-97.
166. Carter, N.M., S. Ali, and J.A. Kirby, Endothelial inflammation: the role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate. J Cell Sci, 2003. 116(Pt 17): p. 3591-600.
167. Wood, Z.A., L.B. Poole, and P.A. Karplus, Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Biochemistry, 2001. 40(13): p. 3900-11.
168. Capila, I., M.J. Hernaiz, Y.D. Mo, T.R. Mealy, B. Campos, J.R. Dedman, R.J. Linhardt, and B.A. Seaton, Annexin V--heparin oligosaccharide complex suggests heparan sulfate--mediated assembly on cell surfaces. Structure, 2001. 9(1): p. 57-64.
169. McCoy, A.J., X.Y. Pei, R. Skinner, J.P. Abrahams, and R.W. Carrell, Structure of beta-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity. J Mol Biol, 2003. 326(3): p. 823-33.
170. Lee, S.C., H.H. Guan, C.H. Wang, W.N. Huang, S.C. Tjong, C.J. Chen, and W.G. Wu, Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J Biol Chem, 2005. 280(10): p. 9567-77.
171. Canales, A., R. Lozano, B. Lopez-Mendez, J. Angulo, R. Ojeda, P.M. Nieto, M. Martin-Lomas, G. Gimenez-Gallego, and J. Jimenez-Barbero, Solution NMR structure of a human FGF-1 monomer, activated by a hexasaccharide heparin-analogue. FEBS J, 2006. 273(20): p. 4716-27.
172. Faham, S., R.E. Hileman, J.R. Fromm, R.J. Linhardt, and D.C. Rees, Heparin structure and interactions with basic fibroblast growth factor. Science, 1996. 271(5252): p. 1116-20.
173. Lietha, D., D.Y. Chirgadze, B. Mulloy, T.L. Blundell, and E. Gherardi, Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J, 2001. 20(20): p. 5543-55.
174. Juers, D.H., B. Rob, M.L. Dugdale, N. Rahimzadeh, C. Giang, M. Lee, B.W. Matthews, and R.E. Huber, Direct and indirect roles of His-418 in metal binding and in the activity of beta-galactosidase (E. coli). Protein Sci, 2009. 18(6): p. 1281-92.
175. Carter, W.J., E. Cama, and J.A. Huntington, Crystal structure of thrombin bound to heparin. J Biol Chem, 2005. 280(4): p. 2745-9.
176. Proudfoot, A.E., S. Fritchley, F. Borlat, J.P. Shaw, F. Vilbois, C. Zwahlen, A. Trkola, D. Marchant, P.R. Clapham, and T.N. Wells, The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem, 2001. 276(14): p. 10620-6.