簡易檢索 / 詳目顯示

研究生: 宋緯倫
Sung, Wei Lun
論文名稱: 撓性可拉伸式多功晶片網路之設計與實現
Design and Implementation of Flexible and Stretchable Multifunctional Chip Network
指導教授: 方維倫
Fang, Weileun
口試委員: 吳名清
Wu, Mingching
鄭裕庭
Cheng, Yu Ting
傅建中
Fu, Chien Chung
黃子逸
Huang, Kevin
林弘毅
Lin, Vincent
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 155
中文關鍵詞: 大面積電子元件可拉伸彈簧微機電製程可回復性可撓性
外文關鍵詞: Large area electronics, Stretchable spring, MEMS micromachining, Recoverable, Flexible
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用可拉伸彈簧實現具功能性節點與多元件整合的大面積可撓性電子元件。陣列內部的節點以彈簧互相連接,透過彈簧可拉伸的特性,使節點所佔的面積具擴展與調變的能力。彈簧作為機械或電性上的連接,而各種功能性元件可整合於節點上,達到各種不同應用需求。本研究以可拉伸彈簧作為主軸,提出四種不同的設計、特性、製程與功能性元件整合的大面積可撓性晶片網路陣列,並適用於不同應用範圍: (1)整合可拉伸金屬彈簧之大面積晶片網路: 其特色為金屬具機械連結與導電能力,並使用硬質基板整合功能性元件,其製程相容於傳統半導體製程;(2)鑲埋可拉伸導線之PDMS-fiber: 以高分子作為機械連接,鑲埋可拉伸導線作為電性連接,具備可編織的能力;(3)整合CNTs-Polymer彈簧之網路陣列: 藉由奈米碳管於不同位置可產生不同的功能性,且彈簧兼具可拉伸與可回復性;(4)具可拉伸單晶矽彈簧之網路陣列: 使用單晶矽製作具可拉伸與回復特性的彈簧,其製程相容於傳統半導體製程。本研究透過上述四種獨特之可拉伸元件設計並加以實現,使其具有大面積、可拉伸、可撓性與多功能整合之特性,未來可應用於各種大面積電子元件與穿戴式裝置上。


    This study designed and implemented the multi-device integration of a flexible large area chip network using stretchable springs. The functional devices are directly implemented and integrated on the nodes of a chip network distribution, and the nodes are mechanically and electrically connected to surrounding nodes by stretchable springs. The springs can stretch and expand the distance between functional devices by several orders of magnitude to construct a large area chip network with interconnected devices. This study using the stretchable springs as a main purpose, and construct four different designs, features, manufacturing process and functional devices integrated for various applications. (1) Large area chip network using stretchable electroplated copper springs. (2) Devices integration with stretchable wire embedded in long PDMS-fiber. (3) Polymer springs with embedded CNTs electrical routing for large area electronics. (4) Large area devices using silicon stretchable springs. The study was implemented the four unique stretchable devices with large area, stretchable, flexible and multi-functional integrated. The future can be applied to a variety of large area electronics and wearable devices.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XIV 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 具可拉伸彈簧之大面積元件 4 1-2-2 整合可拉伸導線之高分子基材 7 1-3 研究動機 8 1-4 全文架構 9 第二章 可拉伸彈簧設計考量 24 2-1 可拉伸彈簧設計參數 24 2-1-1 同平面拉伸參數 24 2-1-2 出平面彎曲參數 25 2-2 可拉伸彈簧材料特性 26 2-3 小結 27 第三章 整合可拉伸金屬彈簧之大面積晶片網路 31 3-1 設計考量 31 3-1-1 可拉伸晶片網路 31 3-1-2 電鍍銅可拉伸彈簧設計 32 3-1-3 製程整合方式 33 3-2 製作流程 35 3-3 製作結果 36 3-4 量測與討論 36 3-4-1 拉伸測試 37 3-4-2 近接感測器特性量測 39 3-4-3 溫度感測器特性量測 40 3-4-4 發光二極體整合驗證 41 3-5 小結 41 第四章 鑲埋可拉伸導線之PDMS-fiber 60 4-1 設計考量 60 4-1-1 PDMS-fiber之設計 60 4-1-2 可拉伸導線設計 61 4-2 製作流程 62 4-3 製作結果 63 4-4 量測與討論 63 4-4-1 受外界附載的電性測試 64 4-4-2 週期性電性穩定性測試量測 65 4-4-3 防水與編織能力測試 66 4-5 小結 66 第五章 整合CNTs-Polymer彈簧之大面積晶片網路 81 5-1 設計考量 81 5-1-1 具CNTs-polymer彈簧之網路陣列 81 5-1-2 複合材料CNTs-Polymer特性 82 5-1-3 可拉伸與可回復彈簧設計 83 5-2 製作流程 84 5-3 製作結果 85 5-4 量測與討論 86 5-4-1 彈簧機械拉伸測試 86 5-4-2 彈簧電性拉伸測試 86 5-5 小結 87 第六章 具單晶矽彈簧之可拉伸載台 96 6-1 設計考量 96 6-1-1 可拉伸晶片載台 96 6-1-2 批量晶片轉移製程 97 6-2 製作流程 97 6-3 製作結果 98 6-4 量測與討論 99 6-4-1 彈簧機械特性量測 99 6-4-2 可拉伸單晶矽彈簧陣列拉伸測試 100 6-5 小結 102 第七章 結論與未來工作 113 7-1 結論 113 7-2 未來工作 115 參考文獻 120 附錄A 整合CMOS-MEMS晶片之PDMS-fiber 133 A-1 設計考量 133 A-2 製作流程 134 A-3 製作結果 135 A-4 量測與討論 136 附錄B 單一結構3軸磁場感測器 145 B-1 設計考量 145 B-2 製作結果 147 B-3 量測與討論 147

    [1] http://www.beechamresearch.com/, Beecham research, 2016.
    [2] http://its.uiowa.edu/, Google glass slide 3.
    [3] http://www.apple.com/, Apple watch.
    [4] http://www.yole.fr/, Yole development, 2015.
    [5] https://www.forrester.com/, Consumer Technology Survey, 2013.
    [6] http://www.loreal.com/, UV patch.
    [7] D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman and J. A. Rogers, “Epidermal electronics,” Science, vol. 333, pp. 838-843, 2011.
    [8] http://www.novartis.com/, Smart lens.
    [9] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. B. Gogonea, S. Bauer and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature, vol. 499, pp. 458-465, 2013.
    [10] http://www.sennologger.com/, Insole X.
    [11] http://mimobaby.com/, Mimo Monitor.
    [12] http://www.holstcentre.com/, LED display on textile.
    [13] http://www.lostvalues.com/, Reflective clothing
    [14] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998.
    [15] N. Yazdi and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, vol. 9, pp. 544-550, 2000.
    [16] S. E. Alper, I. E. Ocak, and T. Akin, “Ultrathick and high-aspect-ratio nickel microgyroscope using EFAB multilayer additive electroforming,” Journal of Microelectromechanical Systems, vol. 16, pp. 1025-1035, 2007.
    [17] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A: Physical, vol. 117, pp. 50-61, 2005.
    [18] A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, “Materials and applications for large area electronics: solution-based approaches,” Chemical Reviews, vol. 110, pp. 3-24, 2010.
    [19] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proceedings of the National Academy of Sciences, vol. 98, pp. 4835-4840, 2001.
    [20] E. Bundgaard, F.C. Krebs, “Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole),” Solar Energy Materials and Solar Cells, vol. 91, pp. 1019-1025, 2007.
    [21] P. Kopola, M. Tuomikoski, R. Suhonen, and A. Maaninen, “Gravure printed organic light emitting diodes for lighting applications,” Thin Solid Films, vol. 517, pp. 5757-5762, 2009.
    [22] F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing–first public demonstration,” Solar Energy Materials and Solar Cells, vol. 93, pp. 422-441, 2009.
    [23] W. Y. Chang, T. H. Fang, H. J. Lin, Y. T. Shen, and Y. C. Lin, “A large area flexible array sensors using screen printing technology,” Journal of Display Technology, vol. 5, pp. 178-183, 2009.
    [24] F. Molina-Lopez, A. V. Quintero, G. Mattana, D. Briand and N. F. de Rooij, “Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation,” Journal of Micromechanics and Microengineering, vol. 23, 025012, 2013.
    [25] T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai and T. Someya, “A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches,” Nature Materials, vol. 6, pp. 413-417, 2007.
    [26] N. C. Wu, M. A. Nystrom, T. R. Lin and H. C. Yu, “Challenges to global RFID adoption,” Technovation, vol. 26, pp. 1317-1323, 2006.
    [27] R. Want, “Enabling ubiquitous sensing with RFID,” Computer, vol. 37, pp. 84-86, 2004.
    [28] J. Kahler, N. Heuck, A. Stranz, A. Waag and E. Peiner, “Pick-and-place silver sintering die attach of small-area chips”, IEEE Transactions on CPMT, vol. 2, pp. 199-207, 2012.
    [29] C. I Chang, M. H. Tsai, Y. C. Liu, C. M. Sun and W. Fang, “Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor,” Journal of Micromechanics and Microengineering, vol. 23, 095029, 2013.
    [30] R. Parashkov, E. Becker, T. Riedl, H. H. Johannes and W. Kowalsky, “Large area electronics using printing methods,” Proceedings of the IEEE, vol. 93, pp. 1321-1329, 2005.
    [31] K. Huang, R. Dinyari, G. Lanzara, J. Y. Kim, J. Feng, C. Vancura, F. K. Chang, and P. Peumans, “An approach to cost-effective, robust, large-area electronics using monolithic silicon,” IEEE International Electron Devices Meeting, Washington, Dec., pp. 217-220, 2007.
    [32] S. Sosin, T. Zoumpoulidis, M. Bartek, L. Wang, R. Dekker, K.M.B. Jansen, L. J. Ernst, “Free-standing, parylene-sealed copper interconnect for stretchable silicon electronics,” Electronic Components and Technology Conference, Lake Buena Vista, May, pp. 1339-1345, 2008.
    [33] S. Sosin, T. Zoumpoulidis, M. Bartek, R. Dekker, “Large-area silicon electronics using stretchable metal interconnect,” Electronic Components and Technology Conference, San Diego, May, pp. 1059-1064, 2009.
    [34] T. Zoumpoulidis, M. Bartek, P. D. Graaf, R. Dekker, “High-aspect-ratio through-wafer parylene beams for stretchable silicon electronics,” Sensors and Actuators A: Physical, vol. 156, pp. 257-264, 2009.
    [35] H. Hocheng and C. M. Chen, “Design, fabrication and failure analysis of stretchable electrical routings,” SENSORS, vol. 14, pp. 11855-11877, 2014.
    [36] T. Sekitani and T. Someya, “Stretchable organic integrated circuits for large-area electronic skin surfaces,” MRS BULLETIN, vol. 37, pp. 236-245, 2012.
    [37] J. A. Rogers, T. Someya and Y. Huang, “Materials and mechanics for stretchable electronics,” SCIENCE, vol. 327, pp. 1603-1607, 2010.
    [38] D. H. Kim, R. Ghaffari, N Lu and J. A. Rogers, “Flexible and stretchable electronics for biointegrated devices,” Annual Review of Biomedical Engineering, vol. 14, pp. 113-128, 2012.
    [39] J. H. Ahn and J. H. Je, “Stretchable electronics: materials, architectures and integrations,” Journal of Physics D: Applied Physics, vol. 45, 103001, 2012.
    [40] D. H. Kim, J. Xiao, J. Song, Y. Huang and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Advanced Materials, vol. 22, pp. 2108-2124, 2010.
    [41] N. Chen, J. Engel, J. Chen, Z. Fan and C. Liu, “Micromachined thermal imaging mesh for conformal sensing system,” IEEE Sensors, Irvine, Oct., pp. 700-703, 2005.
    [42] Z. Guo, K. Kim, G. Lanzara, N. Salowitz, P. Peumans, and F. K. Chang, “Micro-fabricated, expandable temperature sensor network for macro-scale deployment in composite structures,” IEEE Aerospace Conference, Big Sky, Mar., pp. 1-6, 2011.
    [43] G. Lanzara, J. Feng and F. K. Chang, “Design of micro-scale highly expandable networks of polymer-based substrates for macro-scale applications,” Smart Materials and Structures, vol. 19, 045013, 2010.
    [44] R. H. Kim, M. H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D. H. Kim, M. Li, J. Wu, F. Du, H. S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop and J. A. Rogers, “Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates,” NANO Letters, vol. 11, pp. 3881-3886, 2011.
    [45] S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Optics Express, vol. 16, pp. 4965-4971, 2008.
    [46] R. Dinyari, S. B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Applied Physics Letters, vol. 92, 091114, 2008.
    [47] H. C. KO, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers. “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature Letters, vol. 454, pp. 748-753, 2008.
    [48] N. Salowitz, Z. Guo, Y. H. Li, K. Kim, G. Lanzara and F. K. Chang, “Bio-inspired stretchable network-based intelligent composites,” Journal of Composite Materials, 0021998312442900, 2012.
    [49] N. Salowitz, Z. Guo, S. J. Kim, Y. H. Li, G. Lanzara, and F. K. Chang, “Bio-inspired intelligent sensing materials for fly-by-feel autonomous vehicles,” IEEE Sensors, Taipei, Oct., pp. 1-3, 2012.
    [50] G. Lanzara, N. Salowitz, Z. Guo, and F. K. Chang, “A spider-web-like highly expandable sensor network for multifunctional materials,” Advanced Materials, vol. 22, pp. 4643-4648, 2010.
    [51] N. Salowitz, Z. Guo, Y. H. Li, K. Kim, G. Lanzara, K. Kim, Y. Chen, F K Chang, “Development of a bio-inspired stretchable network for intelligent composites,” International Conference On Composite Materials, Jeju island, aug., pp. 22-26, 2011.
    [52] K. Huang and P. Peumans, “Stretchable silicon sensor networks for structural health monitoring,” Proceedings of SPIE, vol. 6174, 617412, 2006.
    [53] M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, “Design of metal interconnects for stretchable electronic circuits,” Microelectronics Reliability, vol. 48, pp. 825-832, 2008.
    [54] D. Brosteaux, F. Axisa, M. Gonzalez, and J. Vanfleteren, “Design and fabrication of elastic interconnections for stretchable electronic circuits,” IEEE Electron Device Letters, vol. 28, pp. 552-554, 2007.
    [55] F. Bossuyt, T. Vervust, and J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, pp. 229-235, 2013.
    [56] Y. Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren and I. D. Wolf, “The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit,” Journal of Micromechanics and Microengineering, vol. 20, 075036, 2010.
    [57] Y. Y. Hsu, C. Papakyrikos, D. Liu, X. Wang, M. Raj, B. Zhang and R. Ghaffari, “Design for reliability of multi-layer stretchable interconnects,” Journal of Micromechanics and Microengineering, vol. 24, 095014, 2014.
    [58] D. H. Kim, R. Ghaffari, N. Lu, S. Wang, S. P. Lee, H.Keum, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y. S. Kim, A. Ameen, Y. Li, Y. Zhang, B. Graff, Y. Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F. G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J. A. Rogers, “Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy,” Proceedings of the National Academy of Sciences, vol. 109, pp. 19910-19915, 2012.
    [59] M. Meng, Y. Xu, H. Zhang and S. Liu, “Intelligent textiles based on MEMS technology,” Electronic Components and Technology Conference, Sparks, May, pp. 2030-2034, 2007.
    [60] X. Zhuang, D. S. Lin, O. Oralkan, and B. T. Khuri-Yakub, “Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS,” Journal of Microelectromechanical Systems, vol. 17, pp. 446-452, 2008.
    [61] S. P. Lacour, Sigurd Wagner, Zhenyu Huang and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters, vol. 82, pp. 2404-2406, 2003.
    [62] S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces, Proceedings of the IEEE, vol. 93, pp. 1459-1467, 2005.
    [63] W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” NANO Letters, vol. 7, pp. 1655-1663, 2001.
    [64] D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science, vol. 311, pp. 208-212, 2006.
    [65] D. H. Kim, Z. Liu, Y. S. Kim, J. Wu, J. Song, H. S. Kim, Y. Huang, K. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small, vol. 5, pp. 2841-2847, 2009.
    [66] D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science, vol. 320, pp. 507-511, 2008.
    [67] K. L. Lin and K. Jain, “Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation,” IEEE Electron Device Letters, vol. 30, pp. 14-17, 2009.
    [68] K. L. Lin and K. Jain, “Stretchable, multilayer, self-aligned interconnects fabricated using excimer laser photoablation and in-situ masking,” Proceedings of SPIE, vol. 7204, 720409, 2009.
    [69] K. L. Lin, J. Chae, and K. Jain, “Design and fabrication of large-area, redundant, stretchable interconnect meshes using excimer laser photoablation and in situ masking,” IEEE Transactions On Advanced Packaging, vol. 33, pp. 592-600, 2010.
    [70] S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P. V. Braun, Y. Huang, U. Paik and J. A. Rogers, “Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems,” NATURE Communications, 4, 1543, 2013.
    [71] Y. Zhang, Y. Huang and J. A. Rogers, “Mechanics of stretchable batteries and supercapacitors,” Current Opinion in Solid State and Materials Science, vol. 19, pp. 190-199, 2015.
    [72] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon and D. H. Kim, “Stretchable silicon nanoribbon electronics for skin prosthesis,” NATURE Communications, 5, 5747, 2014.
    [73] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. I. Najafabadi, D. N. Futaba and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” NATURE nanotechnology, vol. 6, pp. 296-301, 2011.
    [74] L. Cai1, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P. M. Ajayan and S. Xie, “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Scientific Reports, 3, 3048, 2013.
    [75] S. Cheng and Z. Wu, “Microfluidic stretchable RF electronics,” Lab on a Chip, vol.10, pp. 3227-3234, 2010.
    [76] S. Cheng and Z. Wu, “A microfluidic, reversibly stretchable, large‐area wireless strain sensor.” Advanced Functional Materials, vol.21, pp. 2282-2290, 2011.
    [77] F. Forsberg, N. Roxhed, T. Haraldsson, Y. Liu, G. Stemme, and F. Niklaus, “Batch transfer of radially expanded die arrays for heterogeneous integration using different wafer sizes,” Journal of Microelectromechanical Systems, vol. 21, pp. 1077-1083, 2012.
    [78] S. I. Park, Y. Xiong, R. H. Kim, P. Elvikis, M. Meitl, D. H.yeong Kim, J. Wu, J.Yoon, C. J. Yu, Z. Liu, Y. Huang, K. Hwang, P. Ferreira, X. Li, K. Choquette, J. A. Rogers “Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays.” Science, vol. 325, pp. 977-981, 2009.
    [79] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” SCIENCE, vol. 321, pp. 1468-1472, 2008.
    [80] S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale, vol. 6, pp. 2345-2352, 2014.
    [81] L. Cai and C. Wang, “Carbon nanotube flexible and stretchable electronics,” Nanoscale Research Letters, 10:320, 2015.
    [82] J. P. Rojas, A. M. Hussain, A. Arevalo, I. G. Foulds, G. A. T. Sevilla, J. M. Nassar and M. M. Hussain, “Transformational electronics are now reconfiguring,” Proceedings of SPIE, vol. 9467, 946709, 2015.
    [83] D. C. Wang, J. C. Chou, S. M. Wang, P. L. Lu and L. P. Liao, “Application of a fringe capacitive sensor to small-distance measurement” Japanese Journal of Applied Physics, vol.42 pp.5816-5820, 2003.
    [84] P. H. Lo, S. H. Tseng, J. H. Yeh and W. Fang, “Development of a proximity sensor with vertically monolithic integrated inductive and capacitive sensing units,” Journal of Micromechanics and Microengineering, vol.23, 035013, 2013.
    [85] B. E. Noltingk, A. E. T. Nye, and H. J. Turner, “Theory and application of a proximity gauge using fringing capacitance,” in Proc. ACTAIMEKO, pp. 537-549, 1976.
    [86] J. H. Yeh, C. Hong, F. M. Hsu and W. Fang, “Novel temperature sensor implemented on nanoporous anodic aluminum oxide template,” IEEE Sensors, Limerick, Oct., pp.1253-1256, 2011.
    [87] S. He, M. M. Mench and S. Tadigadapa, “Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell,” Sensors and Actuators A: Physical, vol.125, pp.170-177, 2006.
    [88] Y. H. Jang, K. N. Lee and Y. K. Kim, “Characterization of a single-crystal silicon micromirror array for maskless UV lithography in biochip applications,” Journal of Microelectromechanical Systems, vol.16, pp.2360-2368, 2006.
    [89] M. Stoppa and A. Chiolerio, “Wearable electronics and smart textiles: a critical review,” SENSORS, vol. 14, pp. 11957-11992, 2014.
    [90] F. Carpi and D. D. Rossi, “Electroactive polymer-based devices for e-textiles in biomedicine,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, pp. 295-318, 2005.
    [91] R. Paradiso, G. Loriga, N. Taccini, A. Gemignani, and B. Ghelarducci, “WEALTHY - a wearable healthcare system: new frontier on e-textile,” Journal of Telecommunications and Information Technology, pp. 205-213, 2005.
    [92] V. Saarela , S. Franssila, S. Tuomikoski, S. Marttila, P. Ostman, T. Sikanen, T. Kotiaho, R. Kostiainen, “Re-usable multi-inlet PDMS fluidic connector,” Sensors and Actuators B: chemical, vol. 114, pp. 552-557, 2006.
    [93] J. Y. Kim, C.Lee, K. Park, G. Lim and C. Kim, “A PDMS-based 2-axis waterproof scanner for photoacoustic microscopy,” Sensors, vol. 15, pp. 9815-9826, 2015.
    [94] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, vol 56, pp. 2929-2936, 2008.
    [95] M. Park, H. Kim, and J. P. Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films,” Nanotechnology, vol. 19, pp. 055705, 2008.
    [96] C. F. Hu, W. S. Su, and W. Fang, “Development of patterned carbon nanotubes on 3D polymer substrate for the flexible tactile sensor application,” Journal of Micromechanics and Microengineering, vol. 21, 115012, 2011.
    [97] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga,“Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor,” Carbon, vol. 48, pp. 680-687, 2010.
    [98] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng, and N. H. Tai, “Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications,” Advanced Materials, vol. 17, pp. 2987-2992, 2005.
    [99] W. K. Hsu, H. Y. Chu, T. H. Chen, T. W. Cheng, and W. Fang, “An exceptional bimorph effect and a low quality factor from carbon nanotube-polymer composites,” Nanotechnology, vol. 19, pp. 135304, 2008.
    [100] T. H. Chen, S. Y. Lu, C. M. Lin, W. K. Hsu, and W. Fang, “Carbon nanotube arrays on flexible substrate and their field emssion characteristic,” IEEE MEMS Conference, Tucson, Jan., pp. 697-700, 2008.
    [101] P. Rezai, P. R. Selvaganapathy, and G. R. Wohl, “Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization,” Journal of Micromechanics and Microengineering, vol. 21, pp. 065024, 2011
    [102] Y. C. Liu, C. M. Sun, L. Y. Lin, M. H. Tsai, and W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, vol. 20, pp. 119-127.
    [103] H. K. Lee, S. I. Chang, and E. Yoon, “A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment,” Journal Of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE