研究生: |
鄭志恒 Cheng, Chih-Heng |
---|---|
論文名稱: |
使用光交換機與光纖延遲線建造先進先出光佇列之充分且必要條件 A Necessary and Sufficient Condition for SDL Constructions of Optical FIFO Queues |
指導教授: |
鄭傑
Cheng, Jay |
口試委員: |
李瑞光
Lee, Ray-Kuang 陳煥 Chen, Huan 張正尚 Chang, Cheng-Shang 馮輝文 Ferng, Huei-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 先進先出佇列 、光學儲存器 、光佇列 、光交換機 、光纖延遲線 |
外文關鍵詞: | FIFO queues, optical buffers, optical queues, optical switches, fiber delay lines |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,如何利用光交換機和光纖延遲線來建造光佇列被視為在全光封包交換技術中的一個重要的研究議題。在這篇論文中,我們的研究主題是利用光交換機和光纖延遲線來建造先進先出光佇列。我們考慮一個網路元件,它的架構是由1個1×2光交換機、k_1+k_2個2×2光交換機、以及k_1+k_2條長度分別是l_1, l_2,..., l_{k_1+k_2}的光纖延遲線所組成。假設l_{1}^{k_1}=(l_1, l_2,..., l_{k_1+k_2})\in A_{k_1},其中A_{k_1}是一個光纖延遲線長度序列的集合,它收集了滿足以下性質的所有光纖延遲線長度序列l_{1}^{k_1}:所有大於等於0和小於等於\sum_{j=1}^{k_1} l_j的整數經過以l_{1}^{k_1}為參數的C-transform後都是唯一表示。這篇論文的主要貢獻是提出了上述網路元件架構中每個光交換機的明確控制方式,以及若要將此網路元件架構在我們所提出的明確控制方式下操作為一個容量為\sum_{j=k_1+1}^{k_1+k_2} l_j的先進先出光佇列,我們找到了光纖延遲線長度l_{k_1+1}, l_{k_1+2},..., l_{k_1+k_2}選取的充分且必要條件(詳見第一章裡(A1)中的條件)。我們所提出的明確控制方式的關鍵想法是使所有存放於此網路元件架構中的封包符合次序存放的性質(ordered property)以及循環地接連存放的性質(circularly contiguous property),而這兩個性質將導致先進先出光佇列所必須具有的性質被滿足。
Recently, constructing optical queues by using optical crossbar Switches and fiber Delay Lines (SDL) has been recognized as a key research issue for all-optical packet switching. In this thesis, we focus on SDL constructions of optical FIFO queues. We consider a network element consisting of a 1×2 optical crossbar switch, k_1+k_2 2×2 optical crossbar switches, and k_1+k_2 fiber delay lines of lengths l_1, l_2,..., l_{k_1+k_2}. Assume that l_{1}^{k_1}=( l_1, l_2,..., l_{k_1+k_2})\in A_{k_1}, where A_{k_1} is the set of all sequences of fiber delays so that any nonnegative integer x with 0<=x<=\sum_{j=1}^{k_1} l_j has a unique representation by the C-transform of x with respect to l_{1}^{k_1}. The main contribution of this thesis is to provide an explicit control scheme that explicitly specifies the connection patterns of the optical crossbar switches, and obtain a necessary and sufficient condition on the lengths l_{k_1+1}, l_{k_1+2},..., l_{k_1+k_2} (specifically, the condition in (A1) in Chapter 1) for such a network element to be operated as an optical FIFO queue with buffer \sum_{j=k_1+1}^{k_1+k_2} l_j under our proposed control scheme. The key idea in our proposed control scheme is to operate the network element such that packets stored in the network element satisfy an ordered property and a circularly contiguous property, which lead to the properties required of a FIFO queue.
[1] M. J. Karol, “Shared-memory optical packet (ATM) switch,” in Proceedings SPIE : Multigigabit Fiber Communication Systems (1993), October 1993, vol. 2024, pp. 212–222.
[2] Z. Hass, “The “staggering switch”: An electronically controlled optical packet switch,” IEEE Journal of Lightwave Technology, vol. 11, pp. 925–936, May/June 1993.
[3] I. Chlamtac and A. Fumagalli, “Quadro-star: A high performance optical WDM star network,” IEEE Transactions on Communications, vol. 42, pp. 2582–2591, August 1994.
[4] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister, C.-L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C.-J. Suh, and E. W. M. Wong, “Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1014–1029, June 1996.
[5] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high speed packet switching,” IEEE/ACM Transactions on Networking, vol. 4, pp. 11–21, February 1996.
[6] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traffic routing, merging and shaping in photonic cell networks,” IEEE Journal of Lightwave Technology, vol. 15, pp. 86–101, January 1997.
[7] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB: a switch with large optical buffers for packet switching,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1725–1736, October 1998.
[8] E. Varvarigos, “The “packing” and the “scheduling packet” switch architectures for almost all-optical lossless networks,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1757–1767, October 1998.
[9] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Multibuffer delay line architectures for efficient contention resolution in optical switching nodes,” IEEE Transactions on Communications, vol. 48, pp. 2089–2098, December 2000.
[10] Y.-T. Chen, C.-S. Chang, J. Cheng, and D.-S. Lee, “Feedforward SDL constructions of output-buffered multiplexers and switches with variable length bursts,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6–12, 2007.
[11] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Optimal 2 × 1 multi-stage optical packet multiplexer,” in Proceedings IEEE Global Telecommunications Conference (GLOBECOM’97), Phoenix, AZ, USA, November 3–8, 1997, pp. 566–570.
[12] C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Recursive construction of FIFO optical multiplexers with switched delay lines,” IEEE Transactions on Information Theory, vol. 50, pp. 3221–3233, December 2004.
[13] C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Using switched delay lines for exact emulation of FIFO multiplexers with variable length bursts,” IEEE Journal on Selected Areas in Communications, vol. 24, pp. 108–117, April 2006.
[14] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO multiplexers by a single crossbar switch and fiber delay lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519–4531, October 2006.
[15] J. Cheng, “Constructions of fault tolerant optical 2-to-1 FIFO multiplexers,” IEEE Transactions on Information Theory, vol. 53, pp. 4092–4105, November 2007.
[16] J. Cheng, “Constructions of optical 2-to-1 FIFO multiplexers with a limited number of recirculations,” IEEE Transactions on Information Theory, vol. 54, pp. 4040–4052, September 2008.
[17] J. Cheng, C.-S. Chang, T.-H. Chao, D.-S. Lee, and C.-M. Lien, “On constructions of optical queues with a limited number of recirculations,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’08), Phoenix, AZ, USA, April 13–18, 2008.
[18] X. Wang, X. Jiang, and S. Horiguchi, “Improved bounds on the feedfoward design of optical multiplexers,” in Proceedings International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’08), Sydney, Australia, May 7–9, 2008, pp. 178–183.
[19] X. Wang, X. Jiang, and A. Pattavina, “Constructing N-to-N shared optical queues with switches and fiber delay lines,” IEEE Transactions on Information Theory, vol. 58, pp. 3836–3842, June 2012.
[20] S.-Y. R. Li and X. J. Tan, “Mux/demux queues, FIFO queues, and their construction by fiber memories,” IEEE Transactions on Information Theory, vol. 57, pp. 1328–1343, March 2011.
[21] C.-S. Chang, Y.-T. Chen, and D.-S. Lee, “Constructions of optical FIFO queues,” IEEE Transactions on Information Theory, vol. 52, pp. 2838–2843, June 2006.
[22] B. A. Small, A. Shacham, and K. Bergman, “A modular, scalable, extensible, and transparent optical packet buffer,” Journal of Lightwave Technology, vol. 25, pp. 978–985, April 2007.
[23] P.-K. Huang, C.-S. Chang, J. Cheng, and D.-S. Lee, “Recursive constructions of parallel FIFO and LIFO queues with switched delay lines,” IEEE Transactions on Information Theory, vol. 53, pp. 1778–1798, May 2007.
[24] N. Beheshti and Y. Ganjali, “Packet scheduling in optical FIFO buffers,” in Proceedings IEEE High-Speed Networks Workshop (HSN’07), Anchorage, AK, USA, May 11, 2007.
[25] X. Wang, X. Jiang, A. Pattavina, and S. Horiguchi, “A construction of 1-to-2 shared optical buffer queue with switched delay lines,” IEEE Transactions on Communications, vol. 57, pp. 3712–3723, December 2009.
[26] X. Wang, X. Jiang, and A. Pattavina, “Efficient designs of optical LIFO buffer with switches and fiber delay lines,” IEEE Transactions on Communications, vol. 59, pp. 3430–3439, December 2011.
[27] A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue with a switch and delay lines,” Queueing Systems: Theory and Applications, vol. 53, pp. 115–125, July 2006.
[28] H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, “A simple proof for the constructions of optical priority queues,” Queueing Systems: Theory and Applications, vol. 56, pp. 73–77, June 2007.
[29] H. Kogan and I. Keslassy, “Optimal-complexity optical router,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
[30] H. Rastegarfar, M. Ghobadi, and Y. Ganjali, “Emulation of Optical PIFO Buffers,” in Proceedings IEEE Global Communications Conference (GLOBECOM’09), Honolulu, HI, USA, November 30–December 4, 2009.
[31] J. Cheng, H.-C. Chiu, C.-S. Chang, and D.-S. Lee, “Constructions of optical priority queues with multiple inputs and multiple outputs,” IEEE Transactions on Information Theory, vol. 57, pp. 4274–4301, July 2011.
[32] B. Tang, X. Wang, C.-T. Nguyen, and S. Lu, “Constructing sub-exponentially large optical priority queues with switches and fiber delay lines,” in Proceedings IEEE International Symposium on Information Theory (ISIT’16), Barcelona, Spain, July 10–15, 2016.
[33] A. Datta, “Construction of polynomial-size optical priority queues using linear switches and fiber delay lines,” IEEE/ACM Transactions on Networking, vol. 25, pp. 974–987, April 2017.
[34] F. Jordan, D. Lee, K. Y. Lee, and S. V. Ramanan, “Serial array time slot interchangers and optical implementations,” IEEE Transactions on Computers, vol. 43, pp. 1309–1318, 1994.
[35] Y.-T. Chen, J. Cheng, and D.-S. Lee, “Constructions of linear compressors, nonovertaking delay lines, and flexible delay lines for optical packet switching,” IEEE/ACM Transactions on Networking, vol. 17, pp. 2014–2027, December 2009. Conference version appeared in IEEE INFOCOM 2006.
[36] C.-S. Chang, J. Cheng, T.-H. Chao, and D.-S. Lee, “Optimal constructions of fault tolerant optical linear compressors and linear decompressors,” IEEE Transactions on Communications, vol. 57, pp. 1140–1150, April 2009. Conference version appeared in IEEE INFOCOM 2007.
[37] T.-H. Chao, C.-S. Chang, D.-S. Lee, and J. Cheng, “Constructions of multicast flexible delay lines and optical multicast switches with 100% throughput,” in Proceedings IEEE Global Telecommunications Conference (GLOBECOM’07), Washington DC, USA, November 26–30, 2007.
[38] H.-W. Lan, C.-S. Chang, J. Cheng, and D.-S. Lee, “Constructions and analysis of crosstalk-free optical queues,” in Proceedings IEEE International Conference on High Performance Switching and Routing (HPSR’08), Shanghai, China, May 15–17, 2008, pp. 27–32.
[39] D.-S. Lee, K.-J. Hsu, C.-S. Chang, and J. Cheng, “Emulation and approximation of a flexible delay line by parallel non-overtaking delay lines,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’09), Rio de Janeiro, Brazil, April 19–25, 2009.
[40] D.-S. Lee, C.-S. Chang, J. Cheng, H.-S. Chueh, and K.-T. Wang, “Emulation of an optical flexible delay line by parallel variable optical delay lines,” IEEE Communications Letters, vol. 14, pp. 770–772, August 2010.
[41] C.-S. Chang, J. Cheng, and D.-S. Lee, “SDL constructions of FIFO, LIFO and absolute contractors,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’09), Rio de Janeiro, Brazil, April 19–25, 2009.
[42] H. Kogan and I. Keslassy, “Fundamental complexity of optical systems,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6–12, 2007.
[43] D.-S. Lee, C.-S. Chang, J. Cheng, and H.-S. Yan, “Queueing analysis of loss systems with variable optical delay lines,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’08), Phoenix, AZ, USA, April 13–18, 2008.
[44] J. Liu, T. T. Lee, X. Jiang, and S. Horiguchi, “Blocking and delay analysis of single wavelength optical buffer with general packet size distribution,” IEEE Journal of Lightwave Technology, vol. 27, pp. 955–966, April 2009.
[45] D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,” IEEE Journal of Lightwave Technology, vol. 16, pp. 2081–2094, December 1998.
[46] S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Communications Magazine, vol. 38, pp. 84–94, February 2000.
[47] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Communications Magazine, vol. 38, pp. 116–122, September 2000.
[48] S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A unified study of contention-resolution schemes in optical packet-switched networks,” Journal of Lightwave Technology, vol. 21, pp. 672–683, March 2003.
[49] S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” Journal of Lightwave Technology, vol. 24, pp. 4468–4492, December 2006.
[50] K. Mikl´os, “Congestion resolution and buffering in packet switched all-optical networks,” Ph.D. Dissertation, Budapest University of Techonology and Economics, Budapest, Hungary, 2008.
[51] C.-S. Chang and D.-S. Lee, Principles, Architectures and Mathematical Theory of High Performance Packet Switches, Taiwan, R.O.C.: National Tsing Hua University Press, 2008.
[52] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1995.
[53] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, vol. 25, pp. 611–622, April 2002.