研究生: |
古舜安 Ku, Shun An |
---|---|
論文名稱: |
非接觸式電源之電路暨主要磁性元件分析 Analysis of Circuits and Primary Magnetic Components in Non-contact Power Sources |
指導教授: |
王培仁
Wang, Pei Jen |
口試委員: |
茆尚勳
廖聰明 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 非接觸電源 、耦合磁路 、諧振電路 |
外文關鍵詞: | Non-contact Power system, Magnetic Analysis, Resonant Circuits |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著消費性電子裝置的普及,方便及快速的充電技術是目前行動裝置發展的重點之一,其中無線充電技術已逐漸廣為大眾所熟知。目前市場上主要之無線充電技術包括電磁感應及電磁共振技術,其中電磁感應技術,雖然能量傳輸範圍較電磁共振小,然而其設計原理上較易,目前市場上無線充電產品多為電磁感應技術。本論文之目的乃建立非接觸式電源模組之分析過程,以電磁感應耦合原理為主架構,配合諧振電路分析,提升其能量傳輸效率。
本論文以商用感應爐之振盪線圈暨鐵芯構造為分析基礎,測量其重要尺寸,並以電磁場模擬分析軟體進行建模並分析。其特性首先以提升線圈電感耦合效果做初步討論,針對鐵芯幾何尺寸構造做多變數優化設計,再者針對感應爐內部電路做功率模擬分析,探討與實驗之間差異,且以弦波驅動方式驅動磁耦合電路做分析比較。實驗的部分中則使用商用D類放大器做弦波驅動電源,在量測其輸出特性的同時,針對非接觸式充電系統做開路測試以及短路測試,求得其等效電路,再考慮阻抗匹配的情況下加入並聯電容後能夠有效修正功率因數並提升功率,提升整體之傳輸效率。
In recent years, as the consumer electronics devices have become popular, quick and convenient electric charging technology is the development highlight in mobile devices; hence, wireless charging technology has gradually become perceptive in the world. Up to date, electromagnetic induction and electromagnetic resonance are the dominant wireless charging techniques whereas electromagnetic induction may exhibit limited power transfer distance, but it is theoretically easier in design so that most wireless charging products are based upon the electromagnetic induction technique. The objectives of this thesis are to establish a non-contact power system based upon electromagnetic induction, and to analyze the resonance circuits so that the energy transfer efficiency is improved.
In this thesis, we started with the analysis of the primary components of an induction cooker with analysis of induction coils and power ferrites by magnetic models for simulation of dynamic electromagnetic responses. First, we redesigned and optimized the power ferrites to improve the magnetic coupling coefficient. Then, we simulated the driving circuits and compared with experimental results. In addition, we designed a sinusoidal driving circuit for further analysis of the energy transfer efficiency. Finally, a commercial class-D power amplifier was used as a sinusoidal driving source in order to conduct both open-circuit and short-circuit tests to extract the parameters of equivalent circuit. With consideration in impedance matching via parallel capacitor compensation, the power factor and total power transfer efficiency is improved significantly.
[1] H. Matsuki and M. Shiki (1992), “Investigation of coil geometry for transcutaneous energy transmission for artificial heart", IEEE Trans. Magn., Vol. 28, No. 5, pp.2406 -2408.
[2] N. Tesla (1891),“ Experiments With Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination” , AIEE Journal.
[3] A. Kurs , A. Karalis , R. Moffatt , J. D. Joannopoulos , P. Fisher and M. Soljacic (2007),“ Wireless power transfer via strongly coupled magnetic resonances”, Science, Vol. 317, No. 5834, pp.83 -86.
[4] Powercast Corporation http://www.powercastco.com
[5] S. Y. Hui (2013), “Planar wireless charging technology for portable electronic products and Qi”, Proc. IEEE, Vol. 101, No. 6, pp.1290 -1301.
[6] Wireless Power Consortium http://www.wirelesspowerconsortium.com
[7] C. Zhu, C. Yu, K. Liu and R. Ma (2008), “Research on the topology of wireless energy transfer device”, Proc. Vehicle Power Propulsion Conf., pp.1 -5.
[8] E. Bou, E. Alarcon, and R. Sedwick (2013), “ Maximizing efficiency through impedance matching from a circuit-centric model of non-radiative resonant wireless power transfer”, Proc. IEEE ISCAS, May, pp. 29–32.
[9] M. Kiani and M. Ghovanloo (2012), “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission”, IEEE Trans. Circuits Syst. I, Reg. Papers, pp.
[10] A. Karalis , J. Joannopoulos and M. Soljacic (2008), “ Efficient wireless non-radiative mid-range energy transfer”, Ann. Phys., Vol. 323, No. 1, pp.34 -48.
[11] http://anengineersaspect.blogspot.tw/2012/11/nikola-teslas-1891-lecture-to- american.html
[12] http://interestingengineering.com/witricity-to-fulfil-nikola-teslas-dream/
[13] J. C. Lin (2013), “Wireless Power Transfer for Mobile Applications, and Health Effects”, IEEE Antenna and Propagation Magazine, Vol. 55, No. 2, pp. 250–253.
[14] http://www.electronics-tutorials.ws/
[15] Lukas Heinzle (2013), “Measuring the Mutual Interaction between Coaxial Cylindrical Coils with the Bode 100”, Smart Measurement Solution, OMICRON LAB.
[16] David K. Cheng, Field and Wave Electromagnetics, ADDISON-WESLEY PUBLISHING COMPANY, 1989.
[17] Liu, X. and S. Y. Hui (2007), “Equivalent Circuit Modeling of a Multilayer Planar Winding Array Structure for Use in a Universal Contactless Battery Charging Platform”, Power Electronics, IEEE Transactions on , vol.22, no.1, pp.21-29.
[18] Y. Diao, Y. Shen and Y. Gao (2011), “Design of coil structure achieving uniform magnetic field distribution for wireless charging platform”, In Proceeding of Power Electronics Systems and Applications (PESA), pp. 1- 5.