研究生: |
羅宇棋 Lo, Yu-Chi |
---|---|
論文名稱: |
以可溼式製程之透明導電金屬氧化物作為有機發光二極體之電洞注入層 Solution processed transparent and conductive metal oxide as an efficient hole injection layer for organic light emitting diode |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
薛景中
Shyue, Jing-Jong 王欽戊 Wang, Ching-Wu 岑尚仁 Chen, Sun-Zen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 金屬氧化物 、旋塗製成 、有機發光二極體 |
外文關鍵詞: | Metal Oxide, Organic Light Emitting Diode, Sping-coating Method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬氧化物在有機發光二極體中可扮演緩衝層及電洞注入層之角色,並改善有機材料與ITO電極表面不平整之問題,進而使電洞效能提升,讓更多的電洞、電子能夠在發光層內產生結合,使元件低驅動電壓與高放光效率等優點;因此,本研究使用低成本金屬氧化物MoO3與V2O5作為綠光元件之電洞注入層並改變氨水溶液(Ammonia Water)與氧化物之固溶比,再利用溼式旋塗方式製作透明電洞注入層以取代商業常用之材料PEDOT:PSS;結果顯示,使用PEDOT:PSS為對照參數,元件在亮度為100 nits下,能量效率為46.6 lm/w,最大亮度為20,160 cd/m2,而使用MoO3為電洞注入層,元件在亮度為100 nits下能量效率為49.0 lm/w,最大亮度為25,960 cd/m2,而使用V2O5為電洞注入層,能量效率為51.9 lm/w,最大亮度為27,700 cd/m2,最後使用共同混摻MoO3與V2O5為電洞注入層,能量效率為50.1 lm/w,最大亮度為23,570 cd/m2;由此顯示,使用MoO3、V2O5與兩種混摻型態作為電洞注入層,元件效率皆略優於商業用PEDOT:PSS元件。
Since the metal oxide can play a significant role of buffer layer and hole injection layer in the organic light-emitting diode (OLED). Metal oxide can improve the surface roughness, therefore, it can increase the injection ability to enhance the recombination rate in emissive layer, thereby achieving low driving voltage and high light-emitting efficiency of the devices. The present study used low-cost metal oxides, MoO3 and V2O5 were the precursors, and were mixed together. The ratio of ammonia water to solid oxide was adjusted to different solid-solution ratio. A transparent injection layers Molybdenum oxide and vanadium oxide thin films were prepared by spin-coating method, and expected to replace commercially used material poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). In devices performance, the power efficiency of control part of PEDOT:PSS is 46.6 lm/w at 100nits. To the other The optimized efficiency of MoO3 thin film is 49.0lm/wat at 100 nits, and the maximum brightness is 25,960 cd/m2. For V2O5 the optimized efficiency is 51.9 lm/w, and the maximum brightness is 27,700 cd/m2. Finally, the mixed MoO3 and V2O5, the efficacy is 50.1 lm/w, and the maximum brightness is 23,570 cd/m2. Overall, the use of MoO3, V2O5, and mixed part as the hole injection layers are all slightly better than commercial PEDOT:PSS devices.
[1] M. A. Baldo , M. E. Thompson , S. R. Forrest , Nature 2000., 403, 750.
[2] T. Sekitani , T. Someya , Advanced Materials., 2010, 22, 2228-2246.
[3] K. Junghwan, K. Geunjin, G. Youna, L. Jongjin, P. Sung Heum, L.
Kwanghee, Journal of Applied Physics. 2012., 111, 114511.
[4] B. Maennig, M. Pfeiffer, A. Nollau, X. Zhou, K. Leo, Physical Review
B., 2001, 64, 195208.
[5] Y. Cao , G. Yu , C. Zhang , R. Menon , A. J. Heeger , Synthetic Metals.,
1997, 87, 171.
[6] D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker,
D. Metzdorf, D. Schneider, H. H. Johannes, W. Kowalsky, Applied Physics Letters., 2003, 82, 4178.
[7] F. So, D. Kondakov, Advanced Materials., 2010, 22, 3762 .
[8] M. P. de Jong , L. J. van IJzendoorn , M. J. A. de Voigt , Applied Physics
Letters., 2000, 77, 2255 .
[9] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, 2005,
Applied Physics Letters., 87, 193508.
[10] S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, Applied Physics Letters., 2007, 91, 113506.
[11] K. Kanai, K. Koizumi, S. Ouchi, Y. Tsukamoto, K. Sakanoue, Y.
Ouchi, K. Seki, Organic Electronics., 2010, 11, 188.
[12] H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. -N. Whang, K. Jeong, K.
Cho, Y. Yi, Applied Physics Letters., 2008, 93, 043308.
[13] D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J. W. Kim, J.-J. Kim,
Applied Physics Letters., 2007, 91, 011113.
[14] K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, D. C. Olson, Organic Electronics., 2010, 11, 1414.
[15] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn,
Applied Physics Letters., 2009 , 95, 123301.
[16] D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, R. H. Friend, Advanced
Materials., 2010, 22, 3194-3198.
[17] H. You, Y. Dai, Z. Zhang, D. Ma, J, Applied Physics Letters.,
2007,101, 026105.
[18]A. Bernanose, M. Comte, P. Vouaux, Journal De Chimie Physique Et De Physico-Chimie Biologique., 1953, 50, 64-68.
[19]M. Pope, P. Magnante, H. P. Kallmann, Journal of Chemical Physics., 1963, 38, 2042-2043.
[20]W. Helfrich, W. G. Schneide, Physical Review Letters., 1965, 14, 229-231.
[21]W. Helfrich, Schneide.Wg, Journal of Chemical Physics., 1966, 44, 2902-2909.
[22]P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films., 1982, 94, 171-183.
[23]R. Partridge, Polymer, 1983, 24, 733-738.
[24]C. W. Tang, S. A. Vanslyke, Applied Physics Letters., 1987, 51, 913-915.
[25]C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Journal of Applied Physics., 2001, 90, 5048-5051.
[26]S. A. VanSlyke, C. W. Tang, L. C. Roberts, US Patent, 1988, No. 4720432.
[27]C. W. Tang, S. A. Vanslyke, C. H. Chen, Journal of Applied Physics., 1989, 65, 3610-3616.
[28]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature., 1990, 347, 539-541.
[29]R. H. Friend, J. H. Burroughes, D. D. Bradley, US Patent, 1993 No. 5247190.
[30]C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Japanese Journal of Applied Physics Part 2-Letters., 1988, 27, L713-L715.
[31]J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, K. Nagai, Japanese Journal of Applied Physics Part 2-Letters., 1993, 32, L917-L920.
[32]J. Kido, H. Shionoya, K. Nagai, Applied Physics Letters., 1995, 67, 2281-2283.
[33]J. Kido, M. Kimura, K. Nagai, Science., 1995, 267, 1332-1334.
[34]L. S. Hung, C. W. Tang, M. G. Mason, Applied Physics Letters., 1997, 70, 152-154.
[35]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature., 1998, 395, 151-154.
[36]J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Y. Liu, Applied Physics Letters., 2002, 80, 139-141.
[37]L. S. Liao, K. P. Klubek, C. W. Tang, Applied Physics Letters., 2004, 84, 167-169.
[38]Y. Shao, Y. Yang, Applied Physics Letters., 2005, 85, 073510.
[39]J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, C. Hu, Applied Physics Letters., 2006, 88, 193501.
[40]Y. Sun, S. R. Forrest, Nature Photonics., 2008, 2, 483-487.
[41]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature., 2009, 459, 234.
[42]Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, Z. H. Lu, Nature Photonics., 2011, 5, 753-757.
[43]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature., 2012, 492, 234-238.
[44]J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen, C. H. Lin, Advanced Functional Materials., 2013, 23, 2750-2757.
[45]L. G. Thompson, S. E. Webber, Journal of Physical Chemistry., 1972,
76, 221.
[46]A. Dodabalapur, Solid State Communications., 1997, 102, 259-267.
[47]W. D. Gill, Journal of Applied Physics., 1972, 43, 5033-5040.
[48]U. Wolf, V. I. Arkhipov, H. Bassler, Physical Review B., 1999, 59,
7507-7513.
[49]S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. E. Seidler, W. Riess, Physical Review B., 1999, 60, 8791-8797.
[50]M. A. Lampert, P. Mark, New York, Academic Press., 1970.
[51]P. N. Murgatro, Journal of Physics D: Applied Physics., 1970, 3, 151-156.
[52]T. Förster, Ann. Physik., 437, 1948, 55-75.
[53]L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
[54]M. Klessonger and J. Michl, “Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York, 1995.
[55]J. H. Jou, C. Y. Hsieh, J. R. Tseng, P. W. Chen, S. H. Peng, Y. C. Jou,
J. H. Hong, S. H. Shen, M. C. Tang, P. C. Chen, and C. H, Lin, Adv.
Funct. Maters, 23, 2750–2757, 2013. 23. J. H. Jou. "The Second
Chapter." OLED Introdcution. Taiwan, Gau Li, 2015. Print.
[56] J. H. Jou, Y. T. Su, M. T. Hsaio, H. H. Yu, Z. H. He, S. C. Fu, C. H. Chiang, C. T. Chen, C. H. Chou, and J. J. Shyue, J. Phys. Chem. C, 2016, 120, 18794-18802.
[57] William Feehery, Dupont,”OLED lighting manufacturing cost,” SSL Manufacturing Workshop, Fairfox, VA, April 2009.
[58] J. H. Jou, M. C. Sun, H. H. Chou, and C. H. Li, Appl. Phys. Lett. 87, 047508, 2005.
[59] “DuPont Teams with Dainippon Screen to Develop Printed OLED Technology.”, OLED-info, May 2008.
[60] E. Smith. “Solution Processing for OLED TVs”, October 2012.
[61] DuPont, Kateeva Partner to Advance OLED Inkjet Printing - Analyst Blog, Zacks Equity Research, Retrieved June 02, 2015, from http://finance.yahoo.com/news/dupont-kateeva-partner-advance-oled-212609093.html
[62] D. Jury. "Letterpress: The Allure of the Handmade." Rotovision, August, 2004. Print.
[63]S. A. Ruiz, and C. S. Chen, Soft Matter., 3, 168-177, 2007.
[64]J. H. Jou, K. Y. Chou, F. C. Yang, A. Agrawal, S. Z. Chen, J. R. Tseng, C. C. Lin, P. W. Chen, K. T. Wong, and Y. Chi, Appl. Phys. Lett., 104, 203304, 2014.
[65] Fei Huang, Hongbin Wu, Yong Cao, Chemical Society Reviews., 2010, 39, 2500.
[66] Roland Steim, F. Rene Koglera, Christoph J. Brabeccd, Journal of Materials Chemistey., 2010, 20, 2499.
[67] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, Z. H. Lu, Physical Review B., 2009, 80, 235325.
[68] Yanming Sun, Christopher J. Takacs, Sarah R. Cowan, Jung Hwa Seo, Xiong Gong, Anshuman Roy, Alan J. Heeger, Advanced Materials., 2011, 23, 2226.
[69] T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik,
C. J. Brabec, Applied Physics Letters., 2011, 98, 253308.
[70 ] J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, Advanced Materials.,
2011, 23, 70.
[71]S. Murase, Y. Yang, Advanced Materials., 2012, 24, 2459.
[72] Jacek J. Jasieniak, Jason Seifter, Jang Jo, Tom Mates, and Alan J. Heeger, Advanced Materials., 2012, 22, 2594.
[73] Fengxian Xie, Wallace C. H. Choy, Chuandao Wang, Xinchen Li, Shaoqing Zhang, and Jianhui Hou, Advanced Materials., 2013, 25, 2051–2055.
[74] K. Zilberberg , S. Trost , H. Schmidt , T. Riedl , Advanced Energy Materials., 2011, 1, 377.
[75]K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt,
D.Lützenkirchen-Hecht, R. Frahm , T. Riedl, Advanced Functional
Materials., 2011, 21, 4776-4783.
[76] Xinchen Li, Fengxian Xie, Shaoqing Zhang, Jianhui Hou, Wallace CH Choy, Light: Science & Applications., 2015, 4, 273.
[77] Abdullah Alsulami ,Jonathan Griffin , Rania Alqurashi , Hunan Yi , Ahmed Iraqi , David Lidzey, Alastair Buckley, Materials 2016., 9(4), 235.
[78] Richard J. Colton, Alberto M. Guzman, J. Wayne Rabalais, Applied
Physics Letters., 1978, 49, 409.
[79] Hongyuan Chuai, Defeng Zhou, Xiaofei Zhu b, Zhaohui Li, Weiping Huang, ScienceDirect., 2015, 36, 2194–2202.