簡易檢索 / 詳目顯示

研究生: 張涵森
Chang, Han-Sen
論文名稱: 聚二乙烯苯奈米粒子之超疏水薄膜對紙張溶質之擴散能力的影響
Effect of superhydrophobic film on the solvent diffusion in papers
指導教授: 李三保
Lee, San-Boh
口試委員: 林清彬
洪健龍
黃健朝
傅應凱
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 105
中文關鍵詞: 超疏水聚二乙烯苯奈米顆粒擴散紙張
外文關鍵詞: superhydrophobic, polydivinylbenzene, nanoparticle, diffusion, paper
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏水技術是一種具有特殊表面性質的新型技術,具有防水、防霧、防污染、抗氧化和自清潔等重要特點。目前已有許多學術文章研究超疏水技術,但鮮少看到探討其對材料背面帶來之影響,因此本實驗針對此性質進行探討。
    本實驗以紙做為基材,分別探討不同塗佈量(重塗紙、輕塗紙、微塗紙、新聞紙)及不同組成紙漿(道林紙、印書紙、影印紙、新聞紙)的紙之吸水能力、將超疏水之聚二乙烯苯奈米粒子以旋轉塗佈法塗佈在紙上,使其具有超疏水性質後,探討其背面之吸水能力之改變程度。同時,本實驗藉由調整合成超疏水之聚二乙烯苯奈米粒子之成份比例來改變其分子量,並觀察不同分子量之聚二乙烯苯奈米粒子對紙之吸水程度之影響。另外,本實驗也探討不同溫度下,水在經超疏水處理後之不同種類的紙之吸水能力,水在紙中的擴散符合阿瑞尼士方程式,活化能也會受超疏水粉末影響。


    Superhydrophobic coating is a new technology, which makes surface be waterproof, anti-icing, anti-oxidation and self-cleaning, etc. Superhydrophobic technology has been studied in some academic articles, but the effects of superhydrophobic coating on the back side of the substrate were barely been discussed. This promoted us to study the effect of front superhydrophobic coating on the backside of substrate.
    The substrate used in this experiment is paper, which are classified as coated paper and uncoated paper. In this experiment, papers were spin-coated with the superhydrophobic polydivinylbenzene (PDVB) nanoparticle to one side of them, then drop water droplet on it and observe whether the paper surface spreading rate of other side change. Additionally, the molecular weight of the PDVB nanoparticle can be changed by revising the concentration of Azobisisobutyronitrile (AIBN) used in the synthesis. Moreover, the diffusivity of water in paper increases as temperature increases, and satisfies the Arrhenius equation. The activation energies of spreading the controlled paper and superhydrophobic treated paper was discussed.

    摘要 I Abstract II Contents III 致謝 V List of Tables VI Figure captions VIII Nomenclature XI Chapter 1 Introduction 1 1.1 Application and Theoretical Model of Water Repellent 1 1.2 Papers pulp 3 Chapter 2 Experimental details 5 2.1 Superhydrophobic PDVB nanoparticle 5 2.1.1 The procedure of the superhydrophobic suspension 5 2.1.2 The procedure of the superhydrophobic coating 6 2.1.3 Changing molecular weight of NP-PDVB 6 2.2 Viscosity measurement 7 2.3 Microstructure and scanning electron microscope 9 2.4 Fourier transform infrared spectroscopy 10 2.5 Particle size distribution 10 2.6 Contact angle measurement 10 2.7 Diffusivity measurement and analysis 12 2.7.1 Diffusivity of water in papers after superhydrophobic coating 12 2.7.2 Permeation with alcohol 15 2.7.3 Diffusivity at different temperatures 16 2.7.4 Spin-coat rate 16 2.7.5 Molecular weight of NP-PDVB 17 2.8 Starch experiment 17 Chapter 3 Results and discussion 19 3.1 Properties of NP-PDVB 19 3.1.1 Fourier transform infrared spectroscopy 19 3.1.2 Viscosity and molecular weight 20 3.1.3 SEM images of NP-PDVB 21 3.1.4 Particle size distribution 22 3.1.5 Concentration of coating layer on the coated papers 22 3.1.6 Contact angle 23 3.2 Results of spreading experiment 26 3.2.1 Effect of superhydrophobic coating 26 3.2.2 Effect of permeating alcohol 27 3.2.3 Diffusivity of water in different papers 29 3.2.4 Effect of NP-PDVB molecular weight 32 3.2.5 Activation energy 33 3.2.6 Effect of superhydrophobic film thickness 34 3.2.7 effect of starch 35 Chapter 4 Conclusions 36 References 38 Tables 46 Figures 61

    1. C. D. Gu, X. Q. Wang, J. L. Zhang, J. P. Tu, Super Antiwetting Surfaces for Mitigating Drag-Out of Deep Eutectic Solvents. ACS Applied Materials & Interfaces 10, 24209–24216 (2018).
    2. Y. Tsuruki, M. Sakai, T. Isobe, S. Matsushita, A. Nakajima, Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. Journal of Materials Research 29, 1546-1555 (2014).
    3. X. J. Feng, L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials 18, 3063-3078 (2006).
    4. J. Zhang, C. Gu, J. Tu, Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection. ACS Applied Materials & Interfaces 9, 11247-11257 (2017).
    5. V. Bahadur, L. Mishchenko, B. Hatton, J. A. Taylor, J. Aizenberg, T. Krupenkin, Predictive Model for Ice Formation on Superhydrophobic Surfaces. Langmuir 27, 14143-14150 (2011).
    6. C. Liu, N. Wang, Y. Long, Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation. Applied Surface Science 283, 222-226 (2013).
    7. W. Yang, J. Li, P. Zhou, L. Zhu, H. Tang, Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chemical Engineering Journal 327, 849-854 (2017).
    8. H. Luo, S. Yin, G. Zhang, Q. Tang, J. Gen, S. Huang, Study of superhydrophobic surface in self-cleaning of magnetorheological fluid. Journal of Materials Science 53, 1769-1780 (2018).
    9. M.-K. Kim, H. Cha, P. Birbarah, S. Chavan, C. Zhong, Y. Xu, N. Miljkovic, Enhanced Jumping-Droplet Departure. Langmuir 31, 13452-13466 (2015).
    10. J. Zhi, L.-Z. Zhang, Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer. Scientific Reports 7, 9946 (2017).
    11. C. Dorrer, J. Rühe, Drops on Microstructured Surfaces Coated with Hydrophilic Polymers:  Wenzel's Model and Beyond. Langmuir 24, 1959-1964 (2008).
    12. A. Giacomello, S. Meloni, M. Chinappi, C. M. Casciola, Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir 28, 10764-10772 (2012).
    13. B. Bhushan, The rose petal effect and the modes of superhydrophobicity. Surface Topography: Metrology and Properties 368, 4713-4728 (2010).
    14. C. Chang, Manufacturing and Application of Nano-Superhydrophobic Polydivinylbenzene Particulates. Master Thesis, Department of Mechanical and Electo-Mechanical Engineering, Tamkang University, New Taipei City, Taiwan, (2016).
    15. J. McMurry, Organic Chemistry. Cengage, Boston, Massachusetts, USA, 270-272 (1984).
    16. J. Hyväluoma, P. Raiskinmäki, A. Jäsberg, A. Koponen, M. Kataja, J. Timonen, Simulation of liquid penetration in paper. Physical Review E 73, 7051-7058 (2006).
    17. J. F. Oliver, L. Agbezuge, K. Woodcock, A diffusion approach for modelling penetration of aqueous liquids into paper. Colloids and Surfaces A: Physicochemical and Engineering Aspects 89, 213-226 (1994).
    18. S. Krainer, U. Hirn, Short timescale wetting and penetration on porous sheets measured with ultrasound, direct absorption and contact angle. RSC Advances 8, 12861-12869 (2018).
    19. Y. L. Pan, S. Yang, Wetting and Liquid Absorption Characteristics of Inkjet paper. Recent Progress in Ink Jet Technologies II, 486-490 (1996).
    20. M. A. Hubbe, H. Chen, J. A. Heitmann, Permeability reduction phenomena in packed beds, fiber mats, and wet webs of paper exposed to flow of liquids and suspensions: a review. BioResources 4, 1222-1262 (2009).
    21. C. E. Libby, Pulp and Paper Science and Technology. McGraw-Hill book company, New York, New York, USA, vol. 2, 264-272 (1962).
    22. J. H. Han, J. M. Krochta, Wetting properties and water vapor permeability of whey-protein-coated paper. Transactions of the ASAE 42, 1375-1382 (1999).
    23. H. Modaressi, G. Garnier, Mechanism of Wetting and Absorption of Water Droplets on Sized Paper:  Effects of Chemical and Physical Heterogeneity. Langmuir 18, 642-649 (2002).
    24. P. Samyn, Wetting and hydrophobic modification of cellulose surfaces for paper applications. Journal of Materials Science 48, 6455-6498 (2013).
    25. C. E. Libby, Pulp and Paper Science and Technology. McGraw-Hill book company, New York, New York, USA, vol. 2, 1-39 (1962).
    26. C. Hagiopol, J. W. Johnston, Chemistry of Modern Papermaking. CRC Press, Boca Raton, Florida, USA, 97-127,164-168 (2011).
    27. F. Forel, Effects on coated paper quality of uncoated and coated sheet drying strategy. FPInnovations Corp. , Pointe-Claire, Quebec, Canada, 12-24,53-56 (2004).
    28. G. Smook, The Handbook For Pulp and Paper Technologists TAPPI PRESS, Atlanta, Georgia, USA, 72-74 (2016).
    29. K. Iiyama, T. B. T. Lam, B. A. Stone, Covalent Cross-Links in the Cell Wall. Plant Physiology 104, 315-320 (1994).
    30. W. Boerjan, J. Ralph, M. Baucher, Lignin Biosynthesis. Annual Review of Plant Biology 54, 519-546 (2003).
    31. K. K. Pandey, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71, 1969-1975 (1999).
    32. B. Scholze, C. Hanser, D. Meier, Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. Journal of Analytical and Applied Pyrolysis 58-59, 387-400 (2001).
    33. H. Nimz, Beech Lignin—Proposal of a Constitutional Scheme. Angewandte Chemie International Edition in English 13, 313-321 (1974).
    34. G. Smook, The Handbook For Pulp and Paper Technologists. TAPPI PRESS, Atlanta, Georgia, USA, 47-52 (2016).
    35. R. S Davidson, L. A. Dunn, A. Castellan, A. Nourmamode, A study of the photobleaching and photoyellowing of paper containing lignin using fluorescence spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry 58, 349-359 (1991).
    36. G. Atlanta, Corrosion Problems in The Pulp and Paper Industry TAPPI PRESS, Atlanta, Georgia, USA, vol. 2, 70-75 (1948).
    37. J. H. Lehto, Characterization of Mechanical and Chemical Pulp Fibers. 58th Appita Annual Conference and Exhibition Incorporating the Pan Pacific Conference Proceedings (2004): Canberra, Australia 19-21 April 2004.
    38. P. Bajpai, Pulp and Paper Industry. Elsevier, New York, New York, USA, 1-4,16-20 (2015).
    39. M. Smith, The U. S. Paper Industry and Sustainable Production : An Argument for Restructuring., The MIT Press. Cambridge, Massachusetts, USA, 27-58 (1997).
    40. P. J. Flory, Constitution of Three-dimensional Polymers and the Theory of Gelation. The Journal of Physical Chemistry 46, 132-140. (1942).
    41. G. Liu, M. Hou, J. Song, T. Jiang, H. Fan, Z. Zhang, B. Han, Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chemistry 12, 65-69 (2010).
    42. A. Rudin, The Elements of Polymer Science and Engineering. Academic Press, Cambridge, Massachusetts, USA, 104 (1982).
    43. P. C. Hiemenz, T. P. Lodge, Polymer Chemistry. Second ed. CRC Press, Boca Raton, Florida, USA, 435-443 (2007).
    44. M. L. Huggins, The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. Journal of the American Chemical Society 64, 2716 (1942).
    45. E. O. Kraemer, Molecular Weights of Celluloses and Cellulose Derivates. Industrial & Engineering Chemistry 30, 1200-1203 (1938).
    46. P. C. Hiemenz, T. P. Lodge, Polymer Chemistry. Second ed. CRC Press, Boca Raton, Florida, USA, 336, 338-339 (2007).
    47. D. K. Owens, R. C. Wendt, Estimation of the surface free energy of polymers. Journal of Applied Polymer Science 13, 1741-1747 (1969).
    48. F. M. Fowkes, Determination of Interfacial Tensions, Contact Angles, and Dispersion Forces in Surfaces by Assuming Additivity of Intermolecular Interactions in Surfaces. The Journal of Physical Chemistry 66, 382-382 (1962).
    49. M. Żenkiewicz, Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering 24, 137-145 (2007).
    50. S. Lee, H. Y. Lee, I. F. Lee, C. Y. Tseng, Ink diffusion in water. European Journal of Physics 25, 331-336 (2004).
    51. A. Mihi, M. Ocaña, H. Míguez, Oriented Colloidal‐Crystal Thin Films by Spin‐Coating Microspheres Dispersed in Volatile Media. Advanced Materials 18, 2244-2249 (2006).
    52. W. W. Flack, D. S. Soong, A. T. Bell, D. W. Hess, A mathematical model for spin coating of polymer resists. Journal of Applied Physics 56, 1199-1206 (1984).
    53. R. W. J. BeMiller, Starch Chemistry and Technology (third edition). Academic Press, Burlington, Massachusetts, USA, 657-713 (2009).
    54. A. Jonhed, C. Andersson, L. Järnström, Effects of film forming and hydrophobic properties of starches on surface sized packaging paper. Packaging Technology and Science 21, 123-135 (2007).
    55. T. Jafari, E. Moharreri, P. Toloueinia, A. S. Amin, S. Sahoo, N. Khakpash, I. Noshadi, S. P. Alpay, S. L. Suib, Microwave-assisted synthesis of amine functionalized mesoporous polydivinylbenzene for CO2 adsorption. Journal of CO2 Utilization 19, 79-90 (2017).
    56. S. Nuasaen, P. Tangboriboonrat, Highly charged hollow latex particles prepared via seeded emulsion polymerization. Journal of Colloid and Interface Science 396, 75-82 (2013).
    57. J. M. G. Cowie, A. Valeria, Polymers: Chemistry and Physics of Modern Materials (3rd ed.). CRC Press, Boca Raton, Florida, USA, 54 (2008).
    58. D. Bogdal, Reactions under microwave conditions. Elsevier, New York, New York, USA, vol. 25, 47-190 (2005).
    59. G. Moad, D. H. Solomon, Comprehensive Polymer Science and Supplements. Pergamon Press, Oxford, South East, UK, 97-121 (1989).
    60. A. Rudin, The Elements of Polymer Science and Engineering. Academic Press, Cambridge, Massachusetts, USA, 209 (1982).
    61. J. M. G. Cowie, A. Valeria, Polymers: Chemistry and Physics of Modern Materials (3rd ed.). CRC Press, Boca Raton, Florida, USA, 77-80 (2008).
    62. A. Carré, Polar interactions at liquid/polymer interfaces. Journal of Adhesion Science and Technology 21, 961-981 (2007).
    63. M. Kernaghan, Surface Tension of Mercury. Physical Review 37, 990-997 (1931).
    64. Z. Wang, W. Ye, X. Luo, Z. Wang, Heat-Resistant Crack-Free Superhydrophobic Polydivinylbenzene Colloidal Films. Langmuir 32, 3079-3084 (2016).
    65. U. Tuvshindorj, A. Yildirim, F. E. Ozturk, M. Bayindir, Robust Cassie State of Wetting in Transparent Superhydrophobic Coatings. ACS Applied Materials & Interfaces 6, 9680-9688 (2014).
    66. L. Barbieri, E. Wagner, P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles. Langmuir 23, 1723-1734 (2007).
    67. B. L. Sawhney, M. P. N. Gent, Hydrophobicity of Clay Surfaces: Sorption of 1,2-Dibromoethane and Trichloroethene. Clays and Clay Minerals 38, 14-20 (1990).
    68. P. Bampoulis, J. P. Witteveen, E. S. Kooij, D. Lohse, B. Poelsema, H. J. W. Zandvliet, Structure and Dynamics of Confined Alcohol–Water Mixtures. ACS Nano 10, 6762-6768 (2016).
    69. S. Thorman, G. Ström, A. Hagberg, P.-Å. Johansson, Uniformity of liquid absorption by coatings. Papers in Physics 4, 67-73 (2012).
    70. K. Yin Win, S.-S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713-2722 (2005).
    71. S. A. Arrhenius, Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. . Z. Phys. Chem 4, 96–116 (1889).
    72. M. Smith, The U. S. Paper Industry and Sustainable Production : An Argument for Restructuring. The MIT Press, Cambridge, Massachusetts, USA 27-58 (1997).
    73. G. Moad, D. H. Solomon, Azo and Peroxy Initiators. Pergamon Press, Oxford, South East, UK, 97-121 (1989).

    QR CODE