簡易檢索 / 詳目顯示

研究生: 郭宜霖
I-Lin Kuo
論文名稱: 強度調控放射治療與傳統放射治療技術對鼻咽癌之成效比較
Benefit Comparison of Conventional Radiotherapy Techniques with Intensity Modulated Radiotherapy Technique for Patients with Nasopharyngeal Cancer
指導教授: 董傳中
Chuan-Jong Tung
黃英強
Ying-Chiang Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 100
中文關鍵詞: 強度調控放射治療正常組織併發症發生機率腫瘤控制機率三度空間順形放射治療鼻咽癌
外文關鍵詞: IMRT, NTCP, TCP, 3D-CRT, nasopharyngeal cancer; NPC
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從1895年侖琴博士(Dr. Wilhelm Conrad Roentgen)發現X光以來,如何將游離輻射(ionization radiation)有效應用於各項有益於人類和平的用途上,相關的各種研究至今未曾中斷過。1896年一月29號,人類首次利用游離輻射來治療惡性腫瘤(俗稱癌症),所使用的方式是採直接照射患部的原始方法。到2001年的今天,放射治療(radiotherapy)的進展已隨著學理與科技的進步,達到可對輻射在人體內的劑量分布與空間分布,分別進行最佳化調控(modulation) 的技術境界。
    目前臨床醫學治療癌症的方法與技術中,利用游離輻射來治療癌症的放射治療方法仍然佔有非常重要的地位。晚近用於臨床治療癌症的放射治療技術,依照其技術水準的區分,可略分為三大類主要的技術分野。若以這三種放射治療技術實際應用於臨床上的時間早晚來排列,則依序是:(a)傳統的二度空間放射治療技術(conventional 2D radiotherapy technique)。(b)三度空間順形放射治療技術(3D conformal radiotherapy)。(c)強度調控放射治療技術(intensity modulated radiotherapy; IMRT)。

    在進行放射治療的程序之前,臨床的工作人員都會設計出一個內容包括照射區域的人體器官組織空間分布狀況、射束給予方法與輻射劑量分布等資訊的放射治療計畫(radiotherapy plan)。使用各種不同的放射治療技術治療病人時,對放射治療計畫的設計考量也不盡相同。為了能選擇出一個最合適於某種狀況下使用的治療計畫與方式,通常會以治療計畫或技術間的相互比較來作為選擇的依據。常用的比較工具與比較指標有等劑量曲線(isodose curve)、劑量-體積長方圖(dose-volume histogram)等。

    本實驗的目的是建立不同放射治療計畫與技術間,取捨依據的客觀方法。研究方法是利用正常組織發生併發症機率模式(normal tissue complication probability model; NTCP model)與腫瘤控制機率模式(tumor control probability model; TCP model)為指標參數,來分析以不同的放射治療計畫與技術,應用於臨床實際治療中國人罹患率遠高於其他人種的鼻咽癌(nasopharyngeal cancer; NPC)時的治療計畫資料。

    在取得由不同放射治療技術之治療計畫治療NPC時,所推算出的TCP值與包括視神經交叉(chiasm)、腦幹(brainstem)、脊髓(spinal cord)與腮腺(parotid gland)等正常組織器官的NTCP值之後,本實驗將以不同的評分方程式(score function),來評定不同的放射治療技術實際運用於鼻咽癌的治療時的得分狀況,作為臨床選擇放射治療技術或放射治療計畫時的參考。


    The comparison of Intensity Modulated Radiation Therapy (IMRT) with other conventional radiotherapy techniques has become an important research topic in recent years. The purpose of my study is to compare conventional 2 way, 3D CRT with IMRT techniques for external-beam treatment for nasopharyngeal carcinoma (NPC). Each patient’s contour data was planned using 2D, 3D CRT and IMRT separately. Data form radiation planning system was used to derive NTCP and TCP values from dose volume histogram (DVH). To calculate the NTCP, the effective volume DVH reduction scheme theory was used. Finally, three kinds of score function including K-value, TCP and NTCP are introduced to evaluate the impact of IMRT and conventional techniques on ranking of radiation treatment plans.

    目錄 摘要………………………………………………………………………i 誌謝……………………………………………………………….……..iii 目錄………………………………………..…………………………….iv 圖目錄………………………………………..………………...………viii 表目錄………………………………………..………………...………...x 統計圖表目錄…………………………………………………………...xi 第一章 緒論 1.1 前言……………………………………………………...1 1.2 研究目的………………………………………………...2 1.3 實驗架構…………………………………………….…..3 第二章 鼻咽癌與放射治療 2.1 鼻咽癌……………………………………………………4 2.1.1鼻腔部位解剖構造簡述……………………….…4 2.1.2 鼻咽癌的流行病學調查…………………….……5 2.1.3 鼻咽癌的可能發生病因………………………...6 2.1.4 鼻咽癌的病理組織學分類與病程分期……..….8 2.2 鼻咽癌與放射治療…………………………………....13 2.2.1 臨床治療鼻咽癌的方法………………………...13 2.2.2 放射治療所可能產生的併發症………………...14 2.3 鼻咽癌放射治療技術的演進……………………..…..16 2.3.1 鼻咽癌患部的立體空間位置………………….…16 2.3.2 傳統二度空間放射治療技術………………..….17 2.3.3 三度空間順形放射治療…………………..…….19 2.3.4 強度調控放射治療………………………….…..20 第三章 理論基礎 3.1 臨床評估放射治療計畫的方式……………………....23 3.1.1 GTV、CTV與PTV……………………….….…….23 3.1.2 等劑量曲線………………………….….……...24 3.1.3 劑量-體積長方圖……………………………..…25 3.2 劑量體積長方圖重組理論………………………………26 3.2.1 Preferred Lyman 劑量-體積長條圖重組理論..27 3.2.2 Effective Volume劑量-體積長條圖重組理論…28 3.3 輻射生物學的理論………………………………….….29 3.3.1 輻射生物學上的線性-二次方模式………...….30 3.3.2生物等效劑量………………………………..….33 3.4 正常組織併發症發生機率計算模式………………....35 3.4.1幾種常用的正常組織併發症發生機率計算模式.36 3.4.2 模式的選擇………………………………….…..41 3.5 腫瘤控制機率計算模式………………………….….…44 3.5.1幾種常用的腫瘤控制機率計算模式………….…44 3.5.2 模式的選擇與運用…………………………….…47 3.6 比較不同治療技術的評分方程式………………………50 第四章 實驗樣本資料的取得、處理與實驗架構的建立 4.1 臨床鼻咽癌病人實際治療計畫的蒐集與分類………..53 4.2 新增之治療計畫的設計………………………………..56 4.3 實驗架構的建立與執行………………………………..60 4.3.1 DVH資料的準備………………….……………….60 4.3.2 評估模式的程式設計…………………………...61 第五章 結果與討論 5.1 不同治療技術治療計畫所得各正常器官的平均劑量..62 5.1.1 視神經交叉……………………………………...62 5.1.2 腦幹…………………………………………….…64 5.1.3 脊髓…………………………………………….…67 5.1.4 腮腺……………………………………….……..68 5.2 不同治療技術所推算出各正常器官併發症機率比較..70 5.2.1 視神經交叉………………………………….…..70 5.2.2 腦幹…………………………………………….…71 5.2.3 脊髓…………………………………………….…73 5.2.4 腮腺…………………………………………….…75 5.3 不同治療技術所推算出腫瘤控制機率比較…………..77 5.3.1 以平均劑量來推算……………………………...77 5.3.2 將腫瘤分為單位體積來推算TCP……………...82 5.3.3 BED對TCP的增益……………………………..88 5.4 不同治療技術的評分方程式得分比較……………..…89 5.4.1 K value…………………………………….…….89 5.4.2 P+………………………………………….………90 5.4.3 S+………………………………………….………92 第六章 結論……………………………………………………..……95 參考文獻…………………………………………………….…………98 附錄表A: Emami等學者於1991年發表正常組織接受輻射照射後發生併發症機率與劑量、照射體積之間相關調查統計表。 附錄表B: Burman等學者於1991年發表各種器官適用於Lyman NTCP model的n值與m值列表。 附錄表C: 本實驗所設計的3D CRT治療計畫經過臨床物理師檢查後prescription dose所應給予之等劑量曲線修正狀況。

    參考文獻:
    1. 中華民國行政院衛生署網站資料。 來源網址:http://www.doh.gov.tw/lane/statist/88/Welcome.html
    2. Withers, H.R. Contrarian concepts in the progress of radiotherapy. Radiat. Res. 119:395-412; 1989.
    3. 劉育麟醫師個人首頁,耳鼻喉科講座。 來源網址:http://www.health.nsysu.edu.tw/yulinliu/
    4. 中華民國國家衛生研究院,癌症研究組出版品,鼻咽癌之診斷與治療共識。來源網址:http://www.nhri.org.tw/cancer/rese.htm
    5. Pao, W. J. et al: Int. J. Radiat. Oncol. Biol. Phys. 17:301, 1989.
    6. Perez et al: Int. J. Radiat. Oncol. Biol. Phys. 23:271, 1992.
    7. Ho JHC. Nasopharynx. In: Halnan KE, editor. Treatment of cancer, Chapman and Hall: London, 1982. pp. 90-102.
    8. Tait, D. M.; Nahum, A. E. Conformal therapy. Eur. J. Cancer. 26:750-753; 1990.
    9. Christine, E.; Antes, K.; Darby, M.; Song, S.; Starkshall, G. Comparison of 2D conventional, 3D conformal, and intensity-modulated treatment planning techniques for patients with prostate cancer with regard to target-dose homogeneity and dose to critical uninvolved structures. Med. Dosimetry. 24:255-263, 1999.
    10. Wang, X. H.; Mohan, R.; Jackson, A.; Leible, S.A. Optimization of intensity-modulated 3D conformal treatment plans based on biological indices. Radiother. Oncol. 37:140-152; 1995.
    11. Soderstrom, S.; Brahme, A. Which is the most suitable number of photon beam portals in coplanar radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 33 No-1:151-159; 1995.
    12. International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. Report 50. Bethesda, MD: ICRU, 1993.
    13. Niemierko, A; Goitein, M. Dose-volume distributions: a new approach to dose-volume histograms in tree-dimensional treatment planning. Med. Phys. 21:3-11; 1994.
    14. Kutcher, G. J.; Burman, C.; Brewster, L.; Goitein, M.; Mohan, R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int. J. Radiat. Oncol. Biol. Phys. 21:137-146; 1991.
    15. Lyman, J. T. Complication probabilities as assessed from dose volume histograms. Rad. Res. 104:S-13-S-19; 1985.
    16. Kutcher, G. J.; Burman, C. Calculation of complication probability factors for nonuniform normal tissue irradiation: The effective volume method. Int. J. Radiat. Oncol. Biol. Phys. 16:1623-1630; 1989.
    17. Decon, J.; Peckham, M. J.; Steel, G. G. The radioresponsiveness of human tumors and the initial slope of the cell survival curve. Radiother. Oncol. 2:317-323; 1984.
    18. Lea, D. E.; Catheside, D. G. The mechanism of the induction by radiation of chromosome aberrations in tradescantia. J. Genet. 44:216-245; 1942.
    19. Bender M. Induced aberrations in human chromosomes. Am. J. Pathol. 43:26a; 1963.
    20. Rubin, P.; Cassarett, G. A direction for clinical radiation pathology. In: Vaeth, J. M., et al., eds. Frontiers of radiation therapy and oncology VI. Baltimore: University Park Press; 1972:1-16.
    21. Emami, B.; Lyman, J.; Brown, A. et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21:109-122; 1991
    22. Goitein, M.; Schulteiss, T. E. Strategies for treating possible tumor extensions: Some theoretical considerations. Int. J. Radiat. Oncol. Biol. Phys. 11:1519-1528; 1985.
    23. Munro, T. R.; Gilbert, C. W. The relation between tumor lethal doses and the radiosensitivity of tumor cells. Br. J. Radiol. 34:246-251; 1961.
    24. Schultheiss, TE.; Orton, CG.; Peck, RA. Models in radiotherapy: volume effects. Med. Phys. 10:410-415; 1983.
    25. Kallman, P.; Agren, A.; Brahme, A. Tumor and normal tissue responses to fractionated non-uniform dose delivery. Int. J. Radiat. Biol. 62:249-262; 1992.
    26. Lyman, J. T.; Wolbarst, A.B. Optimization of radiation therapy, Ⅳ: a dose-volume histogram reduction algorithm. Int. J. Radiat. Oncol. Biol. Phys. 17:433-436; 1989.
    27. Martel, M.K.; Ten-Haken, R.K.; Hazuka, M.B. et al. Dose-volume histogram and 3-D treatment planning evaluation of patient with pneumonitis. J. Radiat. Oncol. Biol. Phys. 28:575-581; 1994.
    28. Zaider, M.; Amols, H. I. Practical considerations in using calculated healthy-tussue complication probabilities for treatment-plan optimization. Int. J. Radiat. Oncol. Biol. Phys. 44 No-2:439-447; 1999.
    29. Moiseenko, V.; Battista, J.; Van Dyk, J. Normal tissue complication probabilities: Dependence on choice of biological model and dose-volume histogram reduction scheme. Int. J. Radiat. Oncol. Biol. Phys. 46:983-993; 2000.
    30. Brenner, D. J. Dose, volume, and tumor-control predictions in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 26:171-179; 1991.
    31. Webb, S,; Nahum, A. E. A model for calculating tumor control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys. Med. Biol. 38:653-666; 1993.
    32. Okunieff, P.; Morgan, D.; Niemierko, A.; Suit, H. D. Radiation dose-response of human tumors. Int. J. Radiat. Oncol. Biol. Phys. 32 No-4:1227-1237; 1995.
    33. Fiorino, C.; Broggi, S.; Corletto, D.; Cattaneo, G. M.; Calandrino, R. Conformal irradiation of concave-shaped PTVs in the treatment of prostate cancer by simple 1D intensity-modulated beams. Radiother. Oncol. 55:19-58; 2000.
    34. Wu; P. M.; Chua, T. T.; Sham, S. T. et al. Tumor control probability of nasopharyngeal carcinoma: A comparison of different mathematical models. Int. J. Radiat. Oncol. Biol. Phys. 37 No-4:913-920; 1997.
    35. Burman, C.; Kutcer, G. J.; Emani, B; Goitein, M. Fitting of normal tissue tolerance data to an analytic function. Int. J. Radiat. Oncol. Biol. Phys. 21:123-135; 1991.
    36. Hanin, L. G.; L. V. Pavlova; and A. Y. Yakovlev. Biomathematical problems in optimization of cancer radiotherapy. CRC Press, Boca Raton, FL. 1994.
    37. Eric, J. H. Radiobiology for the radiologist; fifth edition. Lippincott Williams & Wilkins; Philadelphia. 1994.
    38. Gordon Steel G. Basic clinical radiobiology; second edition. Aronld. 1997.
    39. Thames, H. D.; Schultheiss, T. E.; Hendry, J.H. et al. Can modest escalations of dose be detected as increased tumor control? Int. J. Radiat. Oncol. Biol. Phys. 22 241-246; 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE