簡易檢索 / 詳目顯示

研究生: 余則威
Tse-Wei Yue
論文名稱: 利用EDC/NHS 肝素化的小腸黏膜吸附第二型重組類腺病毒進行基因傳遞
EDC/NHS-Mediated Heparinization of Small Intestinal Submucosa for Recombinant Adeno-Associated Virus Serotype 2 Binding and Transduction
指導教授: 湯學成
Shiue-Cheng Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 37
中文關鍵詞: 吸附基因表現基因傳遞肝素小腸下層黏膜
外文關鍵詞: Adsorption, Fibroblast, Gene expression, Gene transfer, Heparin, SIS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用基因載體作為治療工具的挑戰在於是否能控制在特定組織
    局部釋放載體,一個可能的解決方法是植入帶有病毒的組織工程支
    架,以達到局部基因傳遞的效果。在這篇研究中我們先將第二型重組
    類腺病毒與肝素化小腸黏膜結合,再將細胞加到帶有病毒的小腸黏膜
    上,細胞貼附生長後達到基因轉導的效果。肝素是第二型重組類腺病
    毒的接受器,肝素化小腸黏膜的製備是利用交聯劑EDC 和NHS 將肝
    素與小腸黏膜作交聯,肝素化後的小腸黏膜可用來吸附第二型重組類
    腺病毒。從報導基因EGFP 和β-galactosidase 的表現顯示出肝素化小腸
    黏膜所吸附的病毒具有活性,可以在培養細胞時達到基因傳遞的效
    果。我們的研究顯示出經過化學修飾後的組織,也就是肝素化小腸黏
    膜,具有吸附第二型重組類腺病毒和基因轉導的效果,所以肝素化小
    腸黏膜可以做為局部基因傳遞一個很好的工具。


    A major challenge in the use of gene transfer vectors as therapeutic tools is
    controlling vector administration at a desired tissue site. One potential solution is
    implanting tissue-engineering constructs loaded with gene transfer vectors such as
    viruses for localized transgene delivery. In this work, we conjugated recombinant
    adeno-associated virus serotype 2 (rAAV2) to a heparinized small intestinal
    submucosa (H-SIS) matrix, which resulted in vector transduction upon cellular
    adhesion. H-SIS was prepared by incorporating heparin, the rAAV2 receptor, into SIS
    through N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) and
    N-hydroxysuccinimide (NHS) mediated crosslinking. Incorporated heparin adsorbed
    rAAV2 onto the H-SIS matrix for conjugation. Using green fluorescent protein and
    □-galactosidase as reporters, we showed that conjugated rAAV2 was active and
    capable of mediating transgene delivery in cell culture. Our work provides a unique,
    modified tissue substrate H-SIS for rAAV2 binding and transduction, which can be a
    useful tool in developing localized gene transfer.

    1.introducton............................................3 2. Material and methods.................................5 2.1 Cell culture .......................................5 2.2 Heparinization of SIS ..............................5 2.3 Determination of immobilized heparin...............6 2.4 Production and purification of recombinant AAV2....6 2.5 Assays.............................................8 2.6 Binding of rAAV2 to heparinized SIS...............11 2.7 Heparin inhibition assay of rAAV2 transduction....11 2.8 Substrate-mediated rAAV2 transduction.............12 3. Results and discussion..............................13 3.1 Soluble heparin has the ability to inhibit transduction efficiency of rAAV2........................13 3.2 Preparation of heparinized SIS (H-SIS) via EDC/NHS crosslinking............................................13 3.3 Binding of rAAV2 to H-SIS and SIS.................14 3.4 Substrate-mediated rAAV-2 transduction............14 4. Conclusions....................................16 Figure 1................................................17 Figure 2................................................18 Figure 3................................................19 Figure 4................................................20 Figure 5................................................22 Figure 6................................................23 Appendix A..............................................24 Appendix B..............................................26 Appendix C..............................................27 Appendix D..............................................28 Appendix E..............................................28 Appendix F..............................................28 Appendix G..............................................29 Appendix H..............................................30 Reference ...............................................31

    1. Mizuguchi, H. and T. Hayakawa, Targeted adenovirus vectors. Hum Gene Ther, 2004. 15(11): p. 1034-44.
    2. Muzyczka, N. and K.H. Warrington, Jr., Custom adeno-associated virus capsids: the next generation of recombinant vectors with novel tropism. Hum Gene Ther, 2005. 16(4): p. 408-16.
    3. Ponnazhagan, S., et al., Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol, 2002. 76(24): p. 12900-7.
    4. Yun, Y.H., et al., Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials, 2004. 25(1): p. 147-57.
    5. Raty, J.K., et al., Enhanced gene delivery by avidin-displaying baculovirus. Mol Ther, 2004. 9(2): p. 282-91.
    6. Pandori, M., D. Hobson, and T. Sano, Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology, 2002. 299(2): p. 204-12.
    7. Scherer, F., et al., Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther, 2002. 9(2): p. 102-9.
    8. Segura, T., P.H. Chung, and L.D. Shea, DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials, 2005. 26(13): p. 1575-84.
    9. Guo, T., et al., Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials, 2006. 27(7): p. 1095-103.
    10. Huang, Y.C., et al., Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds. Hum Gene Ther, 2005. 16(5): p. 609-17.
    11. De Laporte, L., J. Cruz Rea, and L.D. Shea, Design of modular non-viral gene therapy vectors. Biomaterials, 2006. 27(7): p. 947-54.
    12. Stachelek, S.J., et al., Localized gene delivery using antibody tethered adenovirus from polyurethane heart valve cusps and intra-aortic implants. Gene Ther, 2004. 11(1): p. 15-24.
    13. Levy, R.J., et al., Localized adenovirus gene delivery using antiviral IgG complexation. Gene Ther, 2001. 8(9): p. 659-67.
    14. Gu, D.L., et al., Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use. Mol Ther, 2004. 9(5): p. 699-711.
    15. Mima, H., et al., Biocompatible polymer enhances the in vitro and in vivo transfection efficiency of HVJ envelope vector. J Gene Med, 2005. 7(7): p. 888-97.
    16. Bellocq, N.C., et al., Synthetic biocompatible cyclodextrin-based constructs for local gene delivery to improve cutaneous wound healing. Bioconjug Chem, 2004. 15(6): p. 1201-11.
    17. Koefoed, M., et al., Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther, 2005. 12(2): p. 212-8.
    18. Ito, H., et al., Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med, 2005. 11(3): p. 291-7.
    19. Moss, R.B., et al., Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest, 2004. 125(2): p. 509-21.
    20. Manno, C.S., et al., Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med, 2006. 12(3): p. 342-7.
    21. Marshall, E., Gene therapy death prompts review of adenovirus vector. Science, 1999. 286(5448): p. 2244-5.
    22. Hacein-Bey-Abina, S., et al., A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med, 2003. 348(3): p. 255-6.
    23. RO, S., Adeno-associated virus-mediated gene delivery. J Gene Med, 1999. 1(3): p. 166-75.
    24. Summerford, C. and R.J. Samulski, Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. Journal of Virology, 1998. 72(2): p. 1438-1445.
    25. Auricchio, A., et al., Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Human Gene Therapy, 2001. 12(1): p. 71-76.
    26. Brown-Etris, M., W.D. Cutshall, and M.C. Hiles, A new biomaterial derived from small intestine submucosa and developed into a wound matrix device. Wounds-a Compendium of Clinical Research and Practice, 2002. 14(4): p. 150-166.
    27. Demling, R.H., et al., Small intestinal submucosa wound matrix and full-thickness venous ulcers: Preliminary results. Wounds-a Compendium of Clinical Research and Practice, 2004. 16(1): p. 18-22.
    28. Mostow, E.N., et al., Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg, 2005. 41(5): p. 837-43.
    29. Keuren, J.F., et al., Covalently-bound heparin makes collagen thromboresistant. Arterioscler Thromb Vasc Biol, 2004. 24(3): p. 613-7.
    30. Wissink, M.J., et al., Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release, 2000. 64(1-3): p. 103-14.
    31. Wissink, M.J., et al., Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials, 2001. 22(2): p. 151-63.
    32. Wissink, M.J., et al., Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials, 2001. 22(16): p. 2291-9.
    33. Yao, C., et al., Modification of collagen matrices for enhancing angiogenesis. Cells Tissues Organs, 2004. 178(4): p. 189-96.
    34. Yao, C., et al., The impact of proteinase-induced matrix degradation on the release of VEGF from heparinized collagen matrices. Biomaterials, 2006. 27(8): p. 1608-16.
    35. assay, P.f.t.b., The impact of proteinase-induced matrix degradation on the release of VEGF from heparinized collagen matrices. Biomaterials. 27(8): p. 1608-16.
    36. Berridge, M.V. and A.S. Tan, Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys, 1993. 303(2): p. 474-82.
    37. Qing, K., et al., Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med, 1999. 5(1): p. 71-7.
    38. Kashiwakura, Y., et al., Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol, 2005. 79(1): p. 609-14.
    39. Hurst, R.E. and R.B. Bonner, Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy. J Biomater Sci Polym Ed, 2001. 12(11): p. 1267-79.
    40. Summerford, C., J.S. Bartlett, and R.J. Samulski, AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med, 1999. 5(1): p. 78-82.
    41. Hodde, J., Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng, 2002. 8(2): p. 295-308.
    42. Kini, S., et al., A biodegradeable membrane from porcine intestinal submucosa to reinforce the gastrojejunostomy in laparoscopic Roux-en-Y gastric bypass: preliminary report. Obes Surg, 2001. 11(4): p. 469-73.
    43. Schultz, D.J., et al., Porcine small intestine submucosa as a treatment for enterocutaneous fistulas. J Am Coll Surg, 2002. 194(4): p. 541-3.
    44. Ueno, T., et al., Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J Gastrointest Surg, 2004. 8(1): p. 109-12.
    45. Colvert, J.R., 3rd, et al., The use of small intestinal submucosa as an off-the-shelf urethral sling material for pediatric urinary incontinence. J Urol, 2002. 168(4 Pt 2): p. 1872-5; discussion 1875-6.
    46. Baum, C., et al., Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther, 2006. 17(3): p. 253-63.
    47. Nakai, H., et al., AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet, 2003. 34(3): p. 297-302.
    48. Compton, T., D.M. Nowlin, and N.R. Cooper, Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology, 1993. 193(2): p. 834-41.
    49. Pajusola, K., et al., Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. Journal of Virology, 2002. 76(22): p. 11530-11540.
    50. Burova, E. and E. Ioffe, Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther, 2005. 12 Suppl 1: p. S5-17.
    51. Duffy, A.M., et al., Purification of adenovirus and adeno-associated virus: comparison of novel membrane-based technology to conventional techniques. Gene Ther, 2005. 12 Suppl 1: p. S62-72.
    52. Brument, N., et al., A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5. Mol Ther, 2002. 6(5): p. 678-86.
    53. Tsai, C.C., et al., Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study. Biomaterials, 2001. 22(6): p. 523-533.
    54. Eming, S.A., H. Smola, and T. Krieg, Treatment of chronic wounds: State of the art and future concepts. Cells Tissues Organs, 2002. 172(2): p. 105-117.
    55. Deodato, B., et al., Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Therapy, 2002. 9(12): p. 777-785.
    56. Beck, S.E., et al., Repeated delivery of adeno-associated virus vectors to the rabbit airway. Journal of Virology, 1999. 73(11): p. 9446-9455.
    57. Okada, Y., et al., An investigation of adverse effects caused by the injection of high-dose TNF alpha-expressing adenovirus vector into established murine melanoma. Gene Therapy, 2003. 10(8): p. 700-705.
    58. Okada, Y., et al., Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochimica Et Biophysica Acta-General Subjects, 2004. 1670(3): p. 172-180.
    59. Bell, P., et al., No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Molecular Therapy, 2005. 12(2): p. 299-306.
    60. Bennett, J., Immune response following intraocular delivery of recombinant viral vectors. Gene Therapy, 2003. 10(11): p. 977-982.
    61. Bueler, H., Adeno associated viral vectors for gene transfer and gene therapy. Biological Chemistry, 1999. 380(6): p. 613-622.
    62. Tang, S.C., A. Sambanis, and E. Sibley, Proteasome modulating agents induce rAAV2-mediated transgene expression in human intestinal epithelial cells. Biochemical and Biophysical Research Communications, 2005. 331(4): p. 1392-1400.
    63. Landazuri, N. and J.M. Le Doux, Complexation with chondroitin sulfate C and polybrene rapidly purifies retrovirus from inhibitors of transduction and substantially enhances gene transfer. Biotechnology and Bioengineering, 2006. 93(1): p. 146-158.
    64. Veldwijk, M. R.; Topaly, J.; Laufs, S.; Henegge, U. R.; Wenz, F.; Zeller, W. J.; Fruehauf, S., Development and optimization of a real-time quantitative PCR-Based method for the titration of AAV-2 vector stocks (vol 6, pg 272, 2002). Molecular Therapy 2002, 6, (3), 429-429.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE