簡易檢索 / 詳目顯示

研究生: 張孟樺
Chang, Meng-Hua
論文名稱: 真消息與假消息的競爭傳播
Competing Cascades of Truth and Misinformation
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
黃昱智
Huang, Yu-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 30
中文關鍵詞: 假消息具有屬性的網路無知者-傳播者-抑制者的模型穩定性分析非線性系統的微分方程組
外文關鍵詞: misinformation, attributed networks, Ignorant-Spreader-Stifler model, stable analysis, differential equations of the nonlinear system
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們討論真消息和假消息同時存在網路中與個體互動的情形。我們的模型是以傳染病中經典的SIR (Susceptible-Infectious-Recovered) 模型為基礎來延伸;而我們一樣也是將個體分為三種狀態,分別代表他們是否曾經接受過消息。另外我們為了讓模型更貼近現實世界的情況,特別將能夠反映個體偏好真消息或是假消息的屬性加到模型中。接著我們利用微分方程式探討真消息和假消息在模型中傳播的情況,並且透過穩定性分析推導出最終的穩定條件。最後我們用數值結果來說明每一個狀態在模型中如何隨時間變化,而數值的結果顯示即使最初偏好真消息與假消息的個體是一樣多,不過隨著消息在模型中的傳播最終接受真消息的個體會比接受假消息的個體還要多。


    In this paper, we explore the interaction between truth, misinformation, and individuals in a network where both are present simultaneously. Our model is based on the classic Susceptible-Infectious-Recovered model in infectious diseases. We also categorized individuals into three states, representing whether they have ever accepted information. Specially, we incorporate attributes that reflect individual preferences for truth or misinformation into the model. Hence, our model becomes more closely aligned with real-world situations. Besides, we utilize differential equations to investigate the dynamics of truth and misinformation propagation in our model and also analyze stability to derive the eventual stability conditions of our model. Finally, we use numerical results to illustrate how each state in our model changes over time. The numerical results demonstrate, in our model, even with an equal number of individuals having preferences for truth or misinformation at the beginning, a higher proportion of individuals participate in propagating truth rather than misinformation.

    中文摘要--------------------i Abstract-------------------ii Acknowledgements-----------iii List of Figures------------v 1 Introduction-------------1 2 Mixed Population Model---6 3 System Analysis----------12 4 Stable Analysis----------16 5 Numerical Results--------21 6 Conclusion---------------27 Bibliography---------------29

    [1] D. Easley, J. Kleinberg et al., Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge university
    press Cambridge, 2010, vol. 1.
    [2] X. Zhou and R. Zafarani, “Fake news: A survey of research, detection methods, and opportunities,” arXiv preprint arXiv:1812.00315, vol. 2, 2018.
    [3] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on social media: A data mining perspective,” ACM SIGKDD
    explorations newsletter, vol. 19, no. 1, pp. 22–36, 2017.
    [4] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false
    news online,” Science, vol. 359, no. 6380, pp. 1146–1151, 2018.
    [5] K. Dietz, “Epidemics and rumours: A survey,” Journal of the Royal
    Statistical Society: Series A (General), vol. 130, no. 4, pp. 505–528,
    1967.
    [6] D. J. Daley and D. G. Kendell, “Epidemics and rumours,” Nature, vol. 204, no. 4963, p. 1118, 1964.
    [7] D. Maki and M. Thompson, Mathematical models and applications, with emphasis on the social, life, and management sciences. Prentice Hall, 1973.
    [8] H. A. Ebadizadeh and H. Haghbayan, “Dynamics of rumor spreading,” Annals of Optimization Theory and Practice, vol. 1, no. Issue 3 amp; 4, pp. 45–54, 2018.
    [9] Y. Liu, C. Zeng, Y. Luo et al., “Dynamics of a new rumor propagation model with the spread of truth,” Applied Mathematics, vol. 9,no. 05, p. 536, 2018.
    [10] G. Tong, D.-Z. Du, and W. Wu, “On misinformation containment in online social networks,” Advances in neural information processing systems, vol. 31, 2018.
    [11] L. Wang, N. Song, C. Ma, B. He et al., “Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A: Statistical Mechanics and its Applications, vol. 468, pp.855–865, 2017.
    [12] Y. Xiao, W. Yuan, X. Yue, T. Li, and Q. Li, “A diffusion model for multimessage multidimensional complex game based on rumor and anti-rumor,” IEEE Transactions on Computational Social Systems, 2022.
    [13] W. W. Zachary, “An information flow model for conflict and fission in small groups,” Journal of anthropological research, vol. 33, no. 4, pp. 452–473, 1977

    QR CODE