簡易檢索 / 詳目顯示

研究生: 成 玥
Cheng, Yue
論文名稱: 電偶極子在雙曲色散超穎材料薄膜上的共振增強自發輻射原理
Cavity-enhanced spontaneous emission of dipole emitters on a hyperbolic metamaterial slab
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 洪毓玨
Hung, Yu-Chueh
何榮銘
Ho, Rong-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 78
中文關鍵詞: 超穎雙曲線色散材料自發輻射增強臨界耦合腔體共振
外文關鍵詞: Hyperbolic Metamaterials, Spontaneous Emission Rate Enhancement, critical coupling, resonating
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了一個電偶極子在金納米柱雙曲線超材料(HMM)薄膜上的模態的理論分析。在長波長區域,我們將雙曲線超材料簡化為有效的各向異性介質,並且表明最優化的Purcell 因子源於TM 模式反射係數的虛部,其不僅由材料的雙曲散色射特性確定,而且和由於法布里 - 珀羅共振決定的厚度的選擇性厚度相關。我們將雙曲線超材料薄膜內的平面波傳播描述為“臨界耦合模式”和“共振模式”,並從空間頻域分布的角度解釋電偶極子場增強的現象。我們細致討論了HMM薄膜厚度,金屬填充率,材料的吸收系數和電偶極鉅變小導致湮沒等因素。通過嚴格耦合波分析理論優化出幾何結構,我們設計了一個矽同心靶光柵,並展示了12 倍以上的遠場輻射增強。這種數值方法不僅適用於納米柱HMM材料,而且適用於多層HMM材料和其他各向異性介質,是作為設計高速非相干光源器件的有效數值工具。


    We present an analytical description of the modes property for a dipole emitter when put above a gold nanorods hyperbolic metamaterials slab. In the long wavelength region, we simplify the hyperbolic metamaterials as an effective anisotropic medium and show that the optimized purcell factor originates from the imaginary part of the TM mode reflection coefficients, which is not only determined by bulk hyperbolic dispersion but also the selective slab thickness due to the Fabry-Perot resonance. We characterize the plane wave propagation inside the HMM slab as ‘critical coupling mode’ and ‘resonating mode’ and explain the dipole field enhancement in a view of angular expansion. Factors of HMM slab thickness, the metal fill ratio, metal loss and quenching effect are taken into discussion. Using the rigorous coupled wave analysis with the optimized geometry, we deliberately design a silicon bullseye grating and demonstrate more than 12 folds farfield radiation enhancement. This numerical method is not only suitable for nanorods HMM material but also for multilayer HMM material and other anisotropic medium, serving as an efficient tool for the design of high speed incoherent optical source devices.

    Chapter 1 Introduction 1.1 Hyperbolic Metamaterials(HMM) ………………………………………………1 1.1.1 One Dimensional HMM ………………………………………………………1 1.1.2 Two Dimensional HMM ………………………………………………………3 1.2 Density of States Engineering …………………………………………………5 1.2.1 Purcell Factor and Farfield Radiation Enhancement……………………………5 1.2.2 Literature Review ……………………………………………………………6 1.2.3 Our Work ……………………………………………………………………13 Chapter 2 Numerical Method 2.1 Effective Medium Approximation ………………………………………………14 2.2 Angular Spectrum Representation of Dipole Field ……………………………15 2.2.1 Dipole Field: TE Polarization …………………………………………………18 2.2.2 Dipole Field: TM Polarization ………………………………………………21 2.3 Rigorous Coupled Wave Analysis ………………………………………………25 2.3.1 RCWA: TE Polarization ……………………………………………………26 2.3.2 RCWA: TM Polarization ……………………………………………………29 2.4 Double Exponential Rule Integral for Sommerfeld Tails ………………………33 Chapter 3 Results and Discussion 3.1 Wave Propagation: Dielectric to Infinite Type I HMM …………………………36 3.2 Wave Propagation: Dielectric - Type I HMM Slab - Dielectric Schematic ……38 3.2.1 Density of States with Fixed Fill Ratio ………………………………………40 3.2.2 Optimized Thickness: Critical Coupling and Resonating ……………………42 3.2.3 The Effect of Loss ……………………………………………………………50 3.2.4 Varying the Fill Ratio …………………………………………………………53 3.2.5 Quenching ……………………………………………………………………57 3.3 Outcoupling the High-k Modes into Farfield …………………………………59 3.3.1 Grating Coupling: Plane Wave Incidence ……………………………………61 3.3.2 Bullseye Grating optimization………………………………………………62 Chapter 4 Conclusion and Outlook 4.1 Advantages and Disadvantages …………………………………………………63 4.2 Future Improvements …………………………………………………………64 References …………………………………………………………………………65 Appendix …………………………………………………………………………68

    1. Jacob Z, Alekseyev LV, Narimanov E. Optical Hyperlens: Far-field imaging beyond the diffraction limit. Opt Express. 2006;14(18):8247-56.
    2. Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, et al. Optical Negative Refraction in Bulk Metamaterials of Nanowires. Science. 2008;321(5891):930-.
    3. Guo Y, Cortes CL, Molesky S, Jacob Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters. 2012;101(13):131106.
    4. Hu H, Ji D, Zeng X, Liu K, Gan Q. Rainbow Trapping in Hyperbolic Metamaterial Waveguide. Scientific Reports. 2013;3:1249.
    5. K. M. Schulz, H. Vu, S. Schwaiger, A. Rottler, T. Korn, D. Sonnenberg, T. Kipp, and S. Mendach, "Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials," Physical Review Letters 117, 085503 (2016).
    6. Ginzburg P, Roth DJ, Nasir ME, Segovia P, Krasavin AV, Levitt J, et al. Spontaneous emission in non-local materials. Light: Science &Amp; Applications. 2017;6:e16273.
    7. Newman WD, Cortes CL, Jacob Z. Enhanced and directional single-photon emission in hyperbolic metamaterials. J Opt Soc Am B. 2013;30(4):766-75.
    8. Ferrari L, Lu D, Lepage D, Liu Z. Enhanced spontaneous emission inside hyperbolic metamaterials. Opt Express. 2014;22(4):4301-6.
    9. Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Communications. 2012;3:1205.
    10. Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence. 2014;1(1):14.
    11. Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express. 2011;1(6):1090-9.
    12. Boltasseva A, Atwater HA. Low-Loss Plasmonic Metamaterials. Science. 2011;331(6015):290.
    13. Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y. Coherent emission of light by thermal sources. Nature. 2002;416:61.
    14. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R. Near-Field Microscopy Through a SiC Superlens. Science. 2006;313(5793):1595.
    15. Guo Y, Jacob Z. Thermal hyperbolic metamaterials. Opt Express. 2013;21(12):15014-9.
    16. Biehs SA, Tschikin M, Ben-Abdallah P. Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field. Physical Review Letters. 2012;109(10):104301.
    17. Iorsh IV, Mukhin IS, Shadrivov IV, Belov PA, Kivshar YS. Hyperbolic metamaterials based on multilayer graphene structures. Physical Review B. 2013;87(7):075416.
    18. Othman MAK, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express. 2013;21(6):7614-32.
    19. Dickson W, Wurtz GA, Evans P, O’Connor D, Atkinson R, Pollard R, et al. Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tuneable optical properties. Physical Review B. 2007;76(11):115411.
    20. Evans P, Hendren WR, Atkinson R, Wurtz GA, Dickson W, Zayats AV, et al. Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology. 2006;17(23):5746.
    21. Brahim L, Michel O. Single-photon sources. Reports on Progress in Physics. 2005;68(5):1129.
    22. Lu D, Kan JJ, Fullerton EE, Liu Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nano. 2014;9(1):48-53.
    23. Sreekanth KV, Krishna KH, De Luca A, Strangi G. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Scientific Reports. 2014;4:6340.
    24. West PR, Kinsey N, Ferrera M, Kildishev AV, Shalaev VM, Boltasseva A. Adiabatically Tapered Hyperbolic Metamaterials for Dispersion Control of High-k Waves. Nano Letters. 2015;15(1):498-505.
    25. Galfsky T, Krishnamoorthy HNS, Newman W, Narimanov EE, Jacob Z, Menon VM. Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica. 2015;2(1):62-5.
    26. Narimanov EE. Photonic Hypercrystals. Physical Review X. 2014;4(4):041014.
    27. Wells BM, Zayats AV, Podolskiy VA. Nonlocal optics of plasmonic nanowire metamaterials. Physical Review B. 2014;89(3):035111.
    28. Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press; 2012.
    29. Moharam MG, Grann EB, Pommet DA, Gaylord TK. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A. 1995;12(5):1068-76.
    30. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A. 1995;12(5):1077-86.
    31. Lyndin NM, Parriaux O, Tishchenko AV. Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings. J Opt Soc Am A. 2007;24(12):3781-8.
    32. Lalanne P, Morris GM. Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A. 1996;13(4):779-84.
    33. Michalski KA, Mosig JR. Efficient computation of Sommerfeld integral tails – methods and algorithms. Journal of Electromagnetic Waves and Applications. 2016;30(3):281-317.
    34. Chandrasekar R, Wang Z, Meng X, Azzam SI, Shalaginov MY, Lagutchev A, et al. Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics. 2017;4(3):674-80.
    35. Guo P, Chang RPH, Schaller RD. Tunable infrared hyperbolic metamaterials with periodic indium-tin-oxide nanorods. Applied Physics Letters. 2017;111(2):021108.
    36. Darmawan S, Chin MK. Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems. J Opt Soc Am B. 2006;23(5):834-41.
    37. Liu J-M. Photonic devices. Cambridge: Cambridge University Press; 2009.
    38. Vasilantonakis N, Nasir Mazhar E, Dickson W, Wurtz Gregory A, Zayats Anatoly V. Bulk plasmon‐polaritons in hyperbolic nanorod metamaterial waveguides. Laser & Photonics Reviews. 2015;9(3):345-53.
    39. Ford GW, Weber WH. Electromagnetic interactions of molecules with metal surfaces. Physics Reports. 1984;113(4):195-287.
    40. Anger P, Bharadwaj P, Novotny L, editors. Enhancement and Quenching of Single Molecule Fluorescence Near a Gold Nanoparticle. Frontiers in Optics; 2005 2005/10/16; Tucson, Arizona: Optical Society of America.
    41. Thompson BJ. Fourier optics. Rochester, N.Y.: Institute of Optics, University of Rochester.
    42. Chang CK, Lin DZ, Yeh CS, Lee CK, Chang YC, Lin MW, et al. Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures. Opt Lett. 2006;31(15):2341-3.

    QR CODE