簡易檢索 / 詳目顯示

研究生: 胡雁程
論文名稱: 矽晶太陽能電池鈍化技術之研究:硝酸浸泡方式處理及氫還原氣氛搭配氮化矽鈍化
Study of Crystalline Silicon Solar Cells Employing Nitric Acid Oxidatin Technique and Forming Gas Annealing
指導教授: 王立康
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 單晶矽太陽能電池硝酸氫還原氣氛離子佈植
外文關鍵詞: Crystalline Silicon, Solar Cell, Nitric Acid, Forming Gas, ion implantation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提升太陽能電池效率的研究中,我們參考過去的期刊,利用硝酸浸泡的方式,在太陽能電池表面生成氧化層以做表面鈍化。進一步的研究探討與實驗中,我們發現硝酸鈍化的應用,會大大提升太陽能電池的效率,效率比沒有利用硝酸鈍化的太陽能電池高2%絕對值。且高溫與低溫的硝酸鈍化,對於太陽能電池的效率有非常大的影響,低溫的硝酸鈍化與高溫硝酸鈍化效率相差到0.23%。最後元件的RTA時間優化後,效率可以又提高0.11%,到達14.21%。
    硝酸鈍化進一步衍生出的研究,為硝酸鈍化的生成氧化層的優化。我們了解由於硝酸鈍化所形成的氧化層中,帶了少許的水氣與其他雜質,其會造成元件的不穩定與表面缺陷的產生。論文中我們加入一道製程在硝酸鈍化完後,送入通入氫氣的爐館,利用其高溫去除水氣與氫氣的修補,使太陽能電池的效率與穩定度做進一步的提升。論文中量測發現,此法可以將太陽能電池的effective lifetime(EL)由~17μsec提高到~27μsec。
    論文中另一主題,我們利用離子佈植的技術,在最佳化的實驗裡,有效的控制N+層的厚度與濃度梯度,我們找到最適當的離子佈値參數,使得太陽能電池的效率比使用擴散的方式所做出來P-N Junction的太陽能電池(表面結構為平面的)高上1.4%。再利用forming gas annealing(FGA)和silicon nitride passivation(SNP)的技巧,試圖去降低在離子佈值中所造成的缺陷,結果我們使太陽能電池的整體效率再提高~1%,效率到達15.26%,比一般傳統太陽能電池利用爐管擴散方式的效率提高了2.27%。


    致謝…………………………………………………………………I 摘要……………………………………………………………… II 目錄………………………………………………………………III 圖目錄……………………………………………………………VI 表目錄……………………………………………………………XI 第一章 序論……………………………………………………1 1-1 研究動機…………………………………………………1 1-2 太陽能電池的現況………………………………………1 1-2-1 效率極限…………………………………………………1 1-2-2 效率損失來源……………………………………………6 1-2-3 高效率太陽能電池技術發展……………………………8 1-3 論文概要……………………………………………………9 第二章 研究理論…………………………………………………11 2-1 太陽能電池簡介……………………………………………11 2-2 半導體基本物理……………………………………………13 2-2-1 光的吸收…………………………………………………13 2-2-2 電子電洞的複合…………………………………………17 2-3 太陽能電池基本物理………………………………………21 2-3-1 太陽能電池的邊界條件…………………………………21 2-3-2 光電轉換率………………………………………………22 2-3-3 解少數載子擴散方程式…………………………………23 2-3-4 最終特性…………………………………………………23 2-3-5 太陽能電池I-V特性……………………………………26 2-3-6 性能良好的太陽電池…………………………………29 2-3-7 生命期與表面複合效應………………………………30 2-3-8 能隙與效率……………………………………………33 2-3-9 頻譜響應………………………………………………34 2-3-10 寄生電阻效應…………………………………………35 2-3-11 溫度效應………………………………………………38 第三章 硝酸鈍化之太陽能電池………………………………40 3-1 文獻回顧與研究目的……………………………………40 3-2 研究理論…………………………………………………41 3-2-1 硝酸鈍化………………………………………………41 3-3 研究方法與製程步驟……………………………………43 3-3-1 元件結構及研究方法…………………………………43 3-3-2 製程步驟概述…………………………………………43 3-4 數據分析與結果討論……………………………………46 3-4-1 數據分析………………………………………………46 3-4-2 結果討論………………………………………………64 3-4-3 改進製程的數據分析…………………………………64 3-4-4 改進製程的結論………………………………………69 第四章 FGA & SNP鈍化離子佈植之太陽能電池……………70 4-1 文獻回顧與研究目的…………………………………70 4-2 研究理論………………………………………………71 4-2-1 離子佈植……………………………………………71 4-2-2 氫的擴散與鈍化模型………………………………72 4-3 研究方法與製程步驟…………………………………73 4-3-1 元件結構及研究方法………………………………73 4-3-2 製程步驟概述………………………………………74 4-4 數據分析與結果討論…………………………………75 4-4-1 數據分析……………………………………………75 4-4-2 結果討論……………………………………………86 第五章 結論…………………………………………………87 第六章 未來展望……………………………………………88 參考資料……………………………………………………89

    [1] W. Shockley, and H Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510-519, 1961.

    [2] A Marti, J. L. Balenzategui, and R. F. Reyna, “Photon Recycling and Shockley's Diode Equation,” J. Appl. Phys., vol. 82, no. 8, pp. 4067-4075, 1997.

    [3] G. Araujo, and A Marti, “Absolute Limiting Efficiencies for Photovoltaic Energy Conversion,” Sol. Energy Mater & Sol. Cells, vol. 31, pp. 213-240, 1994.

    [4] A. Luque, and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, no. 26, pp. 5014-5017, 1997.

    [5] R. Hulstrom, R. Bird, and C. Riordan, “Spectral Solar Irradiance Data Sets for Selected Terrestrial Conditions,” Sol. Cells, vol. 15, pp. 365-391, 1985.

    [6] Alexis de Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Chap. 2 §2.1, Oxford University, Oxford, New York, 1992.

    [7] J. C. Minano, Optical Confinement in Photovoltaics, in A. G. Luque, L. Araujo, Eds., “Physical Limitations to Photovoltaic Energy Conversion,” Adam Hilger, Bristol, 1990, pp. 50-83.

    [8] W. Shockley, “The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors,” Bell Syst. Tech. J., vol. 28, pp. 435-489, 1949.

    [9] P. Wurfel, “Thermodynamic limitations to solar energy conversion,” Physica E, vol. 14, pp. 18-26, 2002.

    [10] R. Sinton, Y. Kwark, J. Gan, and R. Swanson, “27.5-Percent Silicon Concentrator Solar Cells,” IEEE Electron. Dev. Lett., vol. EDL7, no. 10, pp. 567-569, 1986.

    [11] Green M, “Multiple band and impurity photovoltaic solar cells: general theory and comparison to tandem cells,” Prog. Photovolt., vol. 9, pp. 137–144, 2001.

    [12] Araujo G, “Limits to Efficiency of Single and Multiple Bandgap Solar Cells”, in Luque A, Araujo G, Eds, Physical Limitations to Photovoltaic Energy Conversion, 119–133, Adam Hilger, Bristol (1990).

    [13] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. D. Ceuster, K. R. McIntosh, D. D. Smith, and R. M. Swanson, “Manufacture of Solar Cell with 21% Efficiency,” Proceedings 19th European Photovoltaic Solar Energy Conference, 2004.

    [14] Tomas Markvart, Solar Electricity, John Wiley & Sons Ltd., New York, 1994.

    [15] http://www.nrel.gov/

    [16] http://sanyo.com/news/2009/05/22-1.html

    [17] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Chap. 3, John Wiley & Sons, Ltd, 2003.

    [18] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., vol. 68, no. 9, pp. 1232-1234, 1996.

    [19] A. G. Aberle and R. Hezel, “Progress in Low-temperature Surface Passivation of
    Silicon Solar Cells using Remote-plasma Silicon Nitride,” Progress in Photovoltaics: Research and Applications, vol. 5, pp. 29-50, 1997.

    [20] B. Sopori and Y. Zhang, ”H-Diffusion Mechanism(s) in PECVD Nitride Passivation of Si Solar Cells,” NCPV 1st Conf. Program Review Meeting, Lakewood Colorado, October 2001, pp. 14-17.

    [21] A. Bentzen, A. Ulyashin, A. Suphellen, E. Sauar, D. Grambole, D. N. Wright, E. S. Marstein, B. G. Svensson, and A. Holt, ”Surface Passivation of Silicon Solar Cells by Amorphous Silicon/Silicon Nitride Dual Layers,” 15th International Photovoltaic Science & Engineering Conference (PVSEC-15), Shanghai China, 2005, pp. 316-317.

    [22] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2199-2201, 2001.

    [23] S. K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., vol. 7, pp.427-431, 2004.

    [24] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells,” Appl. Phys. Lett., vol. 92, no. 6, pp. 063510, 2008.

    [25] E. Pincık , H. Kobayashi, R. Hajossy, H. Gleskova, M. Takahashi, M. Jergel, R. Brunner, L. Ortega, M. Kucera, M. Kral, and J. Rusnak, “On interface properties of ultra-thin and very-thin oxide/a-Si:H structures prepared by oxygen based plasmas and chemical oxidation,” Appl. Surf. Sci., vol. 253, pp. 6697-6715, 2007.

    [26] Asuha, S. S. Im, M. Tanaka, S. Imai, M. Takahashi, and H. Kobayashi, “Formation of 10-30 nm SiO2/Si structure with a uniform thickness at ~120℃ by nitric acid oxidation method,” Surf. Sci., vol. 600, pp. 2523-2527, 2006.

    [27] S. Mizushima, S. Imai, Asuha, M. Tanaka, and H. Kobayashi, “Nitric acid method for fabrication of gate oxides in TFT,” Appl. Surf. Sci., vol. 254, pp. 3685-3689, 2008.

    [28] H. Kobayashi, Asuha, O. Maida, M. Takahashi, H. Iwasa, “Nitric Acid Oxidation of Si to Form Ultrathin Silicon Dioxide Layers with a Low Leakage Current Density,” Appl. Phys. Lett., vol. 94, no.11, pp. 7328-7335, 2003.

    [29]A. Asuha, S. Imai, M. Takahashi, and H. Kobayashi, “Nitric Acid Oxidation of Silicon at ~120°C to form 3.5-nm SiO2/Si Structure with Good Electrical Characteristics,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3783-3785, 2004.

    [30] Asuha, Y. L. Liu, O. Maida, M. Takahashi, and H. Kobayashi, “Postoxidation Annealing Treatments to Improve Si/Ultrathin SiO2 Characteristics Formed by Nitric Acid Oxidation,” J. Electrochem.Soc., vol. 151, no.12, pp. G824-G828, 2004.

    [31] B. J. Kailath, A. DasGupta and N. DasGupta, “Electrical and Reliability Characteristics of MOS Devices With Ultrathin SiO2 Grown in Nitric Acid Solutions,” IEEE Trans. Device Mat. Re., vol. 7, no. 4, pp. 602-610, 2007.

    [32] X.D. Zhang, Y. Zhao, Y.T. Gao, F. Zhu, C.C. Wei, X.L. Chen, J. Sun, G.F. Hou, X.H. Geng and, S.Z. Xiong, “Influence of front electrode and back reflector electrode
    on the performances of microcrystalline silicon solar cells,” J. Non-Cryst. Solids, vol. 352, pp. 1863-1867, 2006.
    [33] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, New Jersey: Prentice Hall, 2000, p. 354.

    [34] I. G. Romijn, W. J. Soppe, H. C. Rieffe, W. C. Sinke, A. W. Weeber, “Passivating Multi crystalline Si Solar Cell Using SiNx:H,” 15th Workshop on Crystalline Silicon Solar Cell & Modules: Meterials and Processes, Vail Colorado, USA, 7-10 August, 2005.

    [35] M. Priyanka, M. Ial, R. Kumar, and S. N. Singh, “Optimum Hydrogen Passivation by PECVD Si3N4 Deposition Crystalline Silicon Solar Cells,” IEEE 31th Conf. Photovoltaic Specialists Conference, 2005.

    [36] X. Loozen, J. John, P. Choulat, Y. Ma, H.F.W. Dekkers, G. Agostinelli, and G. Beaucarne, “Effectiveness of Atomic and Molecular Hydrogen Passivation of Silicon/Slicon Oxide Interface with Deposited Oxide,” 23th EU PVSEC Conf. Advanced c-Silicon Solar Cell Processing, 2008.

    [37] Asuha, T. Kobayashi, M. Takahashi, H. Iwasa, H. Kobayashi, “Spectroscopic and Electrical Properties of Ultrathin SiO2 Layers Formed with Nitric Acid,” Surface Science, vol. 547, pp.275-283, 2003.

    [38] O. V. Roos, “A Simple Theory of Back Surface Field (BSF) Solar Cells,” J. Appl. Phys., vol. 49, no. 6, pp. 3503-3511, 1978.

    [39] H. Onoda, E. Takahashi, Y. Kawai, S, Madokoro, “Mechanical Effects of Hafnium and Boron Addition to Aluminum Alloy Films for Submicrometer LSI Interconnects,” Jpn. J. Appl. Phys., vol. 32, no. 11A, pp. 4934-4940, 1993.

    [40] J. A. Minnucci, A. R. Kirkpatrick, and K. W. Matthei, “Tailored Emitter, Low-Resistivity, Ion-Implanted Slicon Solar Cells,” IEEE Trans. Electr. Dev., vol. ED-27, no. 4, pp. 802, 1980.

    [41] K. Tokiguchi, H. Itoh, N. Sakudo, H. Koike, I. Kanomata, and T. Tokuyama, “New Ion Implant Technique for low-cost Solar Cell Fabrication,” Rev. Scl. Instrum, vol.52, no. 7, pp.1110, 1981.

    [42] C. J. Keavney, and M. B. Spitzer, “Indium Phosphide Solar Cells made by Ion Implantation,” Appl. Phys. Lett., vol. 52, no.17, pp.1439, 1988.

    [43] M. Ruzinsky, V. Saly, and D. Ruzinska, “Efficiency (17.2%) All-Implanted Sigle Crystalline Silicon Solar with Screen Printed Contact,” Frist WCPEC, Hawaii, Dec. 5-9, 1994, pp.1485-1488.

    [44] A. Usami, and K. Takebayashi, “Si Solar Cells Fabricated by Ion Implantation and Short Time Furnace Processing,” Jpn. J. Appl. Phys., vol. 21, pp. 13-17, 1982.

    [45] W. Sinke, A. Polman, W.G.J.H.M. V. Sark, and F. W. Saris, “The Use of A Pulsed Laser for Shallow-Junction Processing,” Photovoltaic Solar Energy Conference,London, U.K., 15-19 April, 1985.

    [46] L. D. Nielsen, A. N. Larsen, and V. E, Borisenko, “Incoherent-Light Annealing of Phosphorus Impanted Silicon with Solar Cell Production in View,” J. Phys. (Paris), vol. C5, pp. 381-385, 1983.

    [47] B. L. Sopori, X. Deng, J. P. Benner, A. Rohatgi, P. Sana, S. K. Estreicher, Y. K. Park, M. A. Roberson, “Hydrogen in silicon A discussion of diffusion and passivation mechanisms,” Sol. Energy Mater. Sol. Cells., vol. 41/42, pp. 159-169, 1996.

    [48] P. Sana, A. Rohatgi, J. P. Kalejs, R. O. Bell, “Gettering and Hydrogen Passivation of Edge-Defined Film-Fed Grown Multicrystalline Silicon Solar Cells by Al Diffusion and Forming Gas Anneal,” Appl. Phys. Lett., vol. 64, no. 1, pp. 97-99, 1994.

    [49] R. Kishore, H. R. Moutinho, B. L. Sopori, “Atomic Force Microscopy Study of FG-Annealed and PECVD Silicon Nitride AR-Coated Silicon Solar Cells,” Renewable Energy, vol. 6, no. 5-6, pp. 589-591, 1995.

    [50] A. Marti, L. Cuadra and A. Luque, “Quantum Dot Intermediate Band Solar Cell,” IEEE Record of the Twenty-Eighth Photovoltaic Specialists Conference, 2000, pp. 940-943.

    [51] K.W.J. Barnham and G. Duggan, “A New Approach to High-Efficiency multi-Band-Gap Solar Cell,” J. Appl. Phys., vol. 67, no. 7, pp. 3490-3493, 1990.

    [52] K. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborneb, C. Button, G. Hill, M. Hopkinson, M. Pate, J. Roberts, and T. Foxon, “Voltage enhancement in quantum well solar cells,” J. Appl. Phys., vol. 80, no. 2, pp.1201-1206, 1996.

    [53] M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, C. Calder, “Progress in quantum well solar cells,” Thin Solid Films, vol. 511-512, pp. 76-83, 2006.

    [54] N.Usami, A. Arnold, K. Fujiwara, K. Nakjima, T. Yokoyama, and Y. Shiraki, “New Solar Cells using Ge Dots Embedded in Si PIN Structures,” First IEEE International Conference on Group IV Photonics, 2004.

    [55] M. Tayanagi, N. Usami, W. Pan, K. Ohdaira, K. Fujiwara, Y. Nose, and K. Nakajima, “Improvement in the Conversion Efficiency of Single-Junction SiGe Solar Cells by Intentional Introduction of the Compositional Distribution,” J. Appl. Phys., vol. 101, no. 5, pp. 054504, 2007.

    [56] G. Yue and D. Han, “Electronic states of intrinsic layers in n-i-p solar cells near amorphous to microcrystalline silicon transition studied by photoluminescence spectroscopy,” Appl. Phys. Lett., vol. 77, no. 20, pp. 3185, 2000.

    [57] S.R. Sheng, N.L. Rowell and S.P. McAlister, “Photoluminescence in UHV/CVD Tensile-Strained Si Type-II Quantum Wells on Bulk Crystal SiGe Substrates,” Mat. Res. Soc. Symp. Proc., vol. 744, pp. M8.27.1, 2003.

    [58] P. Bermel, J. D. Joannopoulos and C. Luo: US Patent US2007/0235072 Al.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE