研究生: |
賴泰華 Lai, Ta-Hua |
---|---|
論文名稱: |
高剛性液壓軸承之薄膜節流器參數設計 Parameters design of a membrane restrictor for single-pad and opposed-pad hydrostatic bearing to achieve high static stiffness |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
宋震國
Sung, Cheng-Kuo 蕭德瑛 Shaw, De-In 黃華志 Huang, Hua-Chih 廖運炫 Liao, Yunn-Shiuan |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | 薄膜節流器 、節流器 、薄膜 、液壓軸承 、補償裝置 |
外文關鍵詞: | Membrane restrictor, Membrane, Diaphragm controlled restrictor, Hydrostatic bearing, Compensating device |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液壓軸承技術發展已有多年歷史。相關文獻指出,採用薄膜節流器設計,其軸承剛性的表現較採用其它種類的節流器好。然而,薄膜節流器的設計也相對複雜許多。於本研究,我們針對薄膜節流器提出兩個無因次的節流器設計參數;無因次薄膜剛性(Dimensionless membrane stiffness, ) 與軸承系統的設計節流比 (Design restriction ratio, λ)。於單向墊軸承,當無因次薄膜剛性 =1.33,設計節流比λ=0.25時,軸承剛性表現最佳(理論上,軸承剛性於某些工作區間趨近無限大)。實際上,該參數組合亦適用於對向墊的軸承配置。當軸承上下墊皆採用相同規格設計時,設計無因次薄膜剛性為1.33,可得到相當高的軸承剛性結果。分析結果顯示,當軸承受一外力,使得上油腔壓力達到73%的供油壓力情況下,其軸承之位移量仍可維持於6%的設計油膜間隙內。
Many studies reported that the membrane restrictor may have excellent performance when it was properly designed. However designs of membrane restrictors are much complicated than other frequently used restrictors i.e. capillary restrictor and orifice restrictor for hydrostatic bearings. General rules of membrane restrictor designs, which can be readily available for use by industry designers and engineers are needed.
In this study, it is examined that a high static stiffness of the bearing is attainable as two design parameters of membrane-type restrictor are properly chosen. The first one is the dimensionless stiffness of the membrane (Kr*) and the other one is the design restriction ratio of the bearing system (λ). When the deformation-load relationship of the restrictor is compliance with the ideal trend, the stiffness of the bearing should theoretically approach infinite in most application range. It was derived that Kr* = 1.33 and λ = 0.25 is the solution for such condition. The film thickness for the bearing will be maintained at designed levels over a loading range.
The optimum result is applicable not only for single-pad bearing but also for opposed-pad case. The recommended value for obtaining the great stiffness of an opposed-pad bearing is Kr* = 1.33 and λ = 0.13~0.24. In the case where the upper pad and lower pad are equally designed, the displacement of the bearing can be maintained less than 6 percent of a non-loading clearance if the recess pressure extending to 73 percent of the supply pressure.
[1] Alan Kurtin, K., Childs, D., Luis San Andres, & Hale, K. (1993). Experimental versus theoretical characteristics of a high-speed hybrid (combination hydrostatic and hydrodynamic) bearing. ASME Journal of Tribology, 115(1), pp. 160-168.
[2] Andres, L. S. (1990). Turbulent hybrid bearings with fulid inertia effects. ASME Journal of Tribology, 112(4), pp. 699-707.
[3] Bassani, R. (2001). Hydrostatic slystems supplied through flow dividers. Tribology International, 34(1), pp. 25-38.
[4] Bassani, R. (2011). Lubricated hybrid journal bearings. ASME Journal of Tribology, 133(3), pp. 034501 1-5.
[5] Bassani, R., & Piccigallo , B. (1992). Hydrostatic Lubrication. Amsterdam, AE: Elsevier.
[6] Bassani, R., Ciulli, E., Piccigallo, B., Pirozzi, M., & Staffilano, U. (2006). Hydrostatic lubrication with cryogenic fluids. Tribology Internaiotnal, 39, pp. 827-832.
[7] Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.
[8] Bhushan, B. (2002). Introduction to Tribology. New York: John Wiley and Sons.
[9] Chang, T. Y., Yang, Y. L., Liu, F. R., & Lin, S. C. (2016). Analysis on parameters and design of membrane-type restrictor. Proceeding of the International Conference on Engineering and Natural Science - Summer Session; Kyoto, pp. 104-115.
[10] Charki, A., Diop, K., Champmartin, S., & Ambari, A. (2014). Reliability of a hydrostatic bearing. ASME Journal of Tribology, 136, pp. 0117031-0117036.
[11] Chen, D., Gao, X., Dong, L., & Fan, J. (2016). An evaluation system for surface waviness generated by the dynamic behavior of a hydrostatic spindle in ultra-precision machining. The International Journal of Advanced Manufacturing Technology, pp. 1-8.
[12] Cheng, K., & Rowe, W. B. (1995). A selection strategy for the design of externally pressurized hournal bearings. Tribology International, 28(7), pp. 465-474.
[13] Cusano, C. (1974). Characteristics of externally pressurized journal bearings with membrance-type variable-flow restrictors as compensating elements. Proceedings of the Institution of Mechanical Engineers, (pp. 527-536).
[14] Cusano, C., & Conry, T. (1974). Design of multirecess hydrostatic journal bearing for minimum total power loss. ASME Journal of Lubrication Technology, 94(1), pp. 226-232.
[15] Davies, P. B. (1969). A general analysis of multi-recess hydrostatic joumal bearings. Proceedings of the Institution of Mechanical Engineers, 184, pp. 1-10.
[16] Davies, P. B. (1974). Investigation of an qll-metallic flexible hydrostatic thrust bearing. ASLE Transations, 17(2), pp. 117-126.
[17] DE Gast J, G. C. (1966). A new type of controlled restrictor (M.D.R.) for double film hydrostatic bearings and its application to high-precision machine tools. Advance in Mach. Tool Des. and Res., Proc of the 7th Int. MDTR Comf., (pp. 273-98). Birmingham.
[18] Dowson, D. (1961). Inertia effects in hydrostatic thrust bearings. J. Basic Eng, 83(2), pp. 227-234.
[19] Dowson, D., & Taylor, C. M. (1967). Elastohydrostatic of circular plate thrust bearings. Journal of Lubrication Technology , 89, pp. 237-262.
[20] Dumbrava, M. A. (1985). Review of principles and methods applied to the optimum calculation and design of externally-pressurized bearings. Tribology International, pp. 149-156.
[21] Duvedi, R. K., Singh, M., & Jadon, V. K. (2007). FEM analysis for different configurations of non-recessed hole-entry hybrid journal bearings for non-Newtonian lubricants. Industrial Lubrication and Tribology, 59(6), pp. 266-277.
[22] Ei-Sherbiny, M., Salem, F., & El-Hefnawy, N. (1984). Optimum design of hydrostatic journal bearings, Part I: Maximum load capacity. Tribology International, 17(3), pp. 155-161.
[23] Franchek, N. M., & Childs, D. W. (1994). Experimental test results for four high speed high pressure, orifice-compensated hybrid bearings. ASME Journal of Tribology, 1146(1), pp. 147-153.
[24] Garg, H. C., Sharda, H. B., & Kumar, V. (2006). On the design and development of hybrid journal bearings: a review. Tribotest, 12, pp. 1-19.
[25] Ghigliazza, R., Michelini, R., & Rossi, L. (1970). A design method for externally pressurized journal bearings. Tribology, 3(3), pp. 168-174.
[26] Gohara, M., Somaya, K., Miyatake, M., & Yoshimoto, S. (2014). Static characteristics of a water-lubricated hydrostatic thrust bearing using a membrane restrictor. Tribology International, 75, pp. 111-16.
[27] Hamrock, B. J., Steven, R. S., & Jacobson, B. O. (2004). Fundamentals of Fluid Film Lubrication (2 ed.). New York, NY: Marcel Dekker.
[28] Harnoy, A. (2003). Bearing Design in Machinery: Engineering Tribology and Lubrication. New York: Marcel Dekker.
[29] Ho, Y. S., & VChen, N. S. (1979). Performance characteristics of a capillary-compensated hydrostatic journal bearing. Wear, 52(2), pp. 285-295.
[30] Hori, Y. (2005). Hydrodynamic Lubrication. Tokyo: Springer-Verlag.
[31] Hunt, J. B., & Ahmed, K. M. (1968). Load capacity, stiffness and flow charactetistics of a hydrostatically lubticated six pocket joumal bearing supporting a rotating spindle. Proceedings of the Institution of Mechanical Engineers, 182, pp. 53-62.
[32] Jain, S. C., Sinhasan, R., & Sharma, S. C. (1992). Analytical study of a flexible hybrid journal bearing system using different flow control devices. Tribology International, 25(6), pp. 387-395.
[33] Kang, Y., Chen, C. H., Chen, Y. C., Chang, C., & Hsiao, S. T. (2012). Parameter identification for single-action membrane-type restrictors of hydrostatic bearings. Indust Lubric and Tribol, 64, pp. 39-53.
[34] Kang, Y., Chen, C. H., Lee, H. H., Hung, Y. H., & Hsiao, S. T. (2011). Design for static stiffness of hydrostatic bearings: Single-action variable compensations. Indust Lubric and Tribol, 63, pp. 103-18.
[35] Kang, Y., Shen, P. C., Chang, Y. P., Lee, H. H., & Chiang, C. P. (2007). Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression. Tribology International, 40(9), pp. 1369-1380.
[36] Koshal, D., & Rowe, W. B. (1981a). Fluid-film journal bearings operating in a hybrid mode: Part I - theoretical analysis and design. ASEM Journal of Lubrication Technology, 103(4), pp. 558-565.
[37] Koshal, D., & Rowe, W. B. (1981b). Fluid-film journal bearings operating in a hybrid mode: Part II - experimental investigation. ASME Journal of Lubrication Technology, 103(4), pp. 558-565.
[38] Kumar, V., Sharma, S. C., & Jain, S. C. (2006). On the restrictor design parameter of hybrid hournal bearing for optimum rotordynamic coefficients. Tribology International, 39, pp. 356-368.
[39] Kurtin, A., Childs, D., San Adres, L., & Hale, K. (1993, January). Experimental versus theoretical characteristics of a high-speed hybrid (Combination hydrostatic and hydrodynamic) bearing. Journal of Tribology, 155, pp. 160-167.
[40] Lai, T., Chang, T., Yang, Y., & Lin, S. (2017). Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness. Tribology International, 107, pp. 206-212.
[41] Liu, Z., Pan, W., Lu, C., & Zhang, Y. (2016). Numerical analysis on the static performance of a new piezoelectric membrane restrictor. Industrial Lubrication and Tribology, 68(5), pp. 521-529.
[42] Luis San Andres. (1990). Turbulent hybrid bearings with fluid inertia effects. ASME Journal of Tribology, 112(4), pp. 699-707.
[43] Metman, K. J., Muijderman, E. A., van Heijninge, G., & Halemane, D. M. (1986). Load capacity of multi-recess hydrostatic journal bearings at high eccentricities. Tribology International, 19(1), pp. 29-34.
[44] Mohsin, M. E. (1962). The use of controlled restrictors for compensating hydrostatic bearings. Advances in Mach. Tool Des. and Res., Proc. 3rd Int. MTDR conf., (pp. 429-42). Birmingham.
[45] Mohsin, M. E., & Morsi, S. A. (1969). The dynamic stiffness of controlled hydrostatic bearings. Journal of Lubrication Technology, 91(4), pp. 597-608.
[46] Morsi, S. A. (1969). Tapered spool controller for pressurizede oil film bearings. Proceedings of the Institution of Mechanical Engineers, (pp. 387-96).
[47] O'Donoghue, J. P. (1972). Parallel orifice and capillary control for hydrostatic journal bearings. Tribology, 5(2), pp. 81-82.
[48] O'Donoghue, J. P., & Rowe, W. B. (1969). Hydrostatic bearings design. Tribology International, 2(1), pp. 25-71.
[49] Phalle, V. M., Sharma, S. C., & Jain, S. C. (2012). Influence of wear on the performance of a 2-lobe multirecess hybrid journal bearing system compensated with membrane restrictor. Tribology International, 44, pp. 380-95.
[50] Ram, N., & Sharma, S. C. (2014). Influence of wear on the performance of hole-entry hybrid misaligned journal bearing in turbulent regime. Industrial Lubrication and Tribology, 66(4), pp. 509-519.
[51] Reynolds, O. (1886). On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil. Philosophical Transactions of the Royal Society of London.
[52] Rhode, M. K., & Ezzat, H. A. (1976). On the dynamic behavior of hybrid journal bearings. ASME Journal of Lubrication Technology, 98(1), pp. 90-94.
[53] Rowe, W. B. (1969, November). Hydrostatic bearings. UK Patent 1 170 602.
[54] Rowe, W. B. (1989). Advances in hydrostatic and, hybrid bearing technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 203, pp. 225-242. Instution of Mechanical Engineers.
[55] Rowe, W. B. (2012). Hydrostatic, Aerostatic and Hybrid Bearing Design. Amsterdam: Butterworth-Heinemann.
[56] Rowe, W. B., & Koshal, D. (1980). A new basis for the optimization of hybrid journal bearings. Wear, 64, pp. 115-131.
[57] Rowe, W. B., & O'Donoghue, J. P. (1969). Diaphragm valves for controlling opposed pad bearings. Proceedings of the Institution of Mechanical Engineers. (pp. 1-9). Brighton: Tribology Convention.
[58] Rowe, W. B., Xu, S. X., Chong, F. S., & Weston, W. (1982). Hybrid journal bearings with particular reference to hole-entry configurations. Tribology International, 15(6), pp. 339-348.
[59] Royle, J. K., Howarth, R. B., & Caseley-Hayford, A. L. (1962). Application of automatic control to pressurized oil film bearings. Proceedings of the Institution of Mechanical Engineers, 176(1), pp. 532-541.
[60] Sawicki, J. T., Capaldi, R. J., & Adams, M. L. (1997). Experimental and theoretical rotor dynamic characteristics of a hybrid journal bearings. ASME Journal of Tribology, 119, pp. 132-142.
[61] Scharrer, J. K., & Hibbs, R. I. (1990). Flow coefficients for the orifice of a hydrostatic bearing. Tribology Transactions, 33(4), pp. 543-550.
[62] Sharma, S. C., Jain, S. C., & Bharuka, D. K. (2002). Influence of recess shape on the performance of ta capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6), pp. 347-356.
[63] Sharma, S. C., Phalle, V. M., & Jain, S. C. (2011). Performance analysis of a multirecess capillary compensated conical hydrostatic journal bearing. Tribology International, 44(5), pp. 617-626.
[64] Sharma, S. C., Sinhasan, R., & Jain, S. C. (1992). Performance characteristics of multi-recess hydrostatic/hybrid journal bearings with membranetype variable-flow valve restrictor as compensating elements. Wear, 152, pp. 279-300.
[65] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., & Singh, S. K. (1998). Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries. STLE Tribology Transactions, 41(3), pp. 375-381.
[66] Sharma, S., Jain, S., Basavaraja, J. S., & Sharma, N. (2010). Influence of pocket-size on misaligned hole-entry journal bearing. Industrial Lubrication and Tribology, 62(5), pp. 263-274.
[67] Singh, D. V., Sinhasan, R., & Ghai, R. C. (1977). Static and dynamic analysis of capillary compensated hydrostatic journal bearing by finite element method. ASME Journal of Lubrication Technology, 99(4), pp. 478-484.
[68] Singh, N., Sharma, S. C., Jain, S. C., & Reddy, S. S. (2004). Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes. Tribology International, 37, pp. 11-24.
[69] Sinhasan, R., Sharma, S. C., & Jain, S. C. (1989). Performance characteristics of a constant flow valve compensated multi-recess flexible hydrostatic journal bearing. Wear, 134, pp. 335-356.
[70] Slocum, A. H. (1992). Precision Machine Design. Society of Manufacturing.
[71] Solon, T. (2012, May). Fundamentals of ultraprecision machining. Machine Design, 56-9. Retrieved from machinedesign.com
[72] Stachowiak, G. W., & Batchelor , A. W. (2013). Engineering Tribology (4 ed.). Butterworth-Heinemann.
[73] Stansfield, F. M. (1970). Hydrostatic bearings for machine tools and similar applications. Machinery Publishing.
[74] Stout, K. J., & Rowe, W. B. (1974a). Externally pressurized bearings - design for manufacture, Part 1, journal bearing selection. Tribology International, 3, pp. 98-106.
[75] Stout, K. J., & Rowe, W. B. (1974b). Externally pressurized bearings - design for manufacture, Part 2 – Journal bearing selection. Tribology International, 7(5), pp. 169-180.
[76] Stout, K. J., & Rowe, W. B. (1974c). Externally pressurized bearings - design for manufacture, Part 3 – design for liquid externally pressurized bearings for manufacture including tolerancing procedures. Tribology International, 7(3), pp. 195-212.
[77] Timoshenko, S., & Woinowsky Krieger, S. (1959). Theory of Plates and Shells (2 ed.). New York: Mcgraw-Hill College.
[78] Venkatesh, V. C., & Izman, S. (2007). Precision Engineering. New Delhi: McGraw-Hill.
[79] Weck, M. (1984). Handbook of Machine Tools. John Wiley & Sons.
[80] Yoshimoto, S., Rowe, W. B., & Ives, D. (1988). A theoretical investigation of the effect of inlet pocket size on the performance of hole entry hybrid journal bearings employing capillary restrictors. Wear, 127(3), pp. 307-318.
[81] Youden, D. H. (1986). On the design of ultra precise machine slides. Proc. SPIE 0676, Ultraprecision Machining and Automated Fabrication of Optics (pp. 42-6). SPIE.
[82] Zuo, X., Wang, J., Yin, Z., & Li, S. (2013). Performance analysis of multirecess angled-surface slot-compensated conical hydrostatic bearing. ASME Journal of Tribology, 135(4), pp.041701-041701-10.