研究生: |
黃聖傑 Huang, Sheng-Jie |
---|---|
論文名稱: |
極性分子裡的少體與多體物理 Few-Body and Many-Body physics in Polar Molecule Systems |
指導教授: |
王道維
Wang, Daw-Wei |
口試委員: |
郭西川
Gou, Shih-Chuan 陳應誠 Chen, Ying-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 極性分子 、偶極 、少體物理 |
外文關鍵詞: | polar molecule, few-body |
相關次數: | 點閱:102 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究了不同極性分子系統裡的少體與多體物理。首先我們考慮把極性分子放入兩條由雷射形成的管狀位能井中並外加一個隨時間固定的電場。藉由改變電場跟管狀位能井的角度,我們可以找到奇特的少體束縛態。另外,藉由外加隨時間變化的電場,我們可以控制極性分子之間的交互作用。一種新的少體束縛態可以在這個系統中形成,而且我們可以證明,這種束縛態是非常穩定的。當我們把極性分子放入光晶格中,並外加電場,我們可以設計出等效的自旋模型。我們用平均場理論去研究XY模型在橫向跟縱向場中 - 一個等效自旋模型的例子 - 的行為。
In this thesis, we study interesting few-body and many-body physics in different polar molecule systems. By loading polar molecules in two tubes and applying a static electric field to polarize dipoles, we can find many exotic few-body complexes when we change the angel between the electric field and the tubes. Further, the interaction between polar molecules can be shaped by applying an external AC field to couple internal states of polar molecules. A new type of bound states (supermolecules) can be formed in this system. We show that the supermolecules are quite long-lived. Moreover, by loading the polar molecules into a deep optical lattice, we can design effective spin models by controlling external electric fields. A mean-field study for XY model with both transverse and longitudinal field is also presented.
[1] K.-K. Ni, et al., Science 322, 231 (2008).
[2] D.-W. Wang, M. Lukin and E. Demler, Phys. Rev. Lett. 97, 180413(2006).
[3] K.-K. Ni, et al., Nature 464, 1324 (2010).
[4] N. R. Cooper and G.V. Shlyapnikov, Phys. Rev. Lett. 103, 155302 (2009); J. Levinsen, N. R. Cooper, and G. V. Shlyapnikov, Phys. Rev. A 84, 013603 (2011).
[5] D.-W. Wang, Phys. Rev. Lett. 98, 060403 (2007); A. Pikovski, et al., Phys. Rev. Lett. 105, 215302 (2010). M. A. Baranov, et al., Phys. Rev. A 83, 043602 (2011).
[6] C.-M. Chang, et al., Phys. Rev. A 79, 053630 (2009); Y.-P. Huang and D.-W. Wang, Phys. Rev. A 80, 053610 (2009).
[7] J. R. Armstrong, et al., Europhys. Lett. 91, 16001 (2010); M. Klawunn, J. Duhme, and L. Santos, Phys. Rev. A 81, 013604 (2010); B. Wunsch, et al., Phys. Rev. Lett. 107, 073201 (2011). N. T. Zinner, et al., arXiv:1110.1552v1; J. R. Armstrong, et al., arXiv:1106.2102; M. Dalmonte, et al., Phys. Rev. Lett. 107, 163202 (2011); N. T. Zinner, et al., arXiv:1105:6264v1.
[8] A. Micheli, et al., Phys. Rev. A 76, 043604 (2007); H.P. Bu ̈chler, et al, Phys. Rev. Lett. 98, 060404 (2007).
[9] C.-H. Lin, Y.-T. Hsu, H. Lee, and D.-W. Wang, Phys. Rev. A 81, 031601 (2010).
[10] Andrew C. Potter, et al., Phys. Rev. Lett. 105, 220406 (2010).
49
[11] B. Wunsch, et al., Phys. Rev. Lett. 107, 073201 (2011)
[12] N. T. Zinne,r et al., Phys. Rev. A 84, 063606 (2011)
[13] F. Deuretzbacher, J. C. Cremon, and S. M. Reimann, Phys. Rev. A 81, 063616 (2010).
[14] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner, e-print arXiv:1109.4602v1.
[15] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner, Phys. Rev. Lett. 106, 250401 (2011).
[16] D.-W. Wang, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 97, 180413 (2006).
[17] D.-W. Wang, Phys. Rev. Lett. 98, 060403 (2007),
[18] A. C. Potter, E. Berg, D.-W. Wang, B. I. Halperin, and E. Demler, Phys. Rev. Lett. 105, 220406 (2010).
[19] I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 5808 (2000).
[20] I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. Lett. 98, 100402 (2007).
[21] I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. A 76, 053618 (2007).
[22] I. B. Mekhov and H. Ritsch, Laser Phys. 19, 610 (2009).
[23] I. B. Mekhov and H. Ritsch, Phys. Rev. A 80, 013604 (2009); Laser Phys. 20, 694 (2010).
[24] I. de Vega, J. I. Cirac, and D. Porras, Phys. Rev. A 77, 051804(R) (2008).
[25] G. M. Bruun, B. M. Andersen, E. Demler, and A. S. Sorensen, Phys. Rev. Lett. 102,
030401 (2009).
[26] T. Roscilde, et. al. , New J. Phys. 11, 055041 (2009).
50
[27] M. O. Scully and M. S. Zubairy, Quantum Optics, Sec. 10.1 (Cambridge University Press, Cambridge, 1997).
[28] S. -J. Huang, et al., Phys. Rev. A 85, 055601 (2012).
[29] C.A. Regal, et al., Phys. Rev. Lett. 92, 040403 (2003); C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005); V. Gurarie, L. Radzihovsky, Ann. of Phys. 322 2-119 (2007).
[30] L. Radzihovsky, J. I. Park, and P. B. Weichman. Phys. Rev. Lett. 92, 160402 (2004); M.W.J. Romans, et al., Phys. Rev. Lett. 93, 020405 (2004).
[31] Such kind of bound state has also been mentioned in Ref. [4] in the context of scattering problem, but its general properties are not studied in details there.
[32] K. Kanjilal and D. Blume, Phys. Rev. A 73, 060701(R) (2006); S.-M. Shih and D.-W. Wang, Phys. Rev. A. 79, 065603 (2009); J.P. D’Incao, and C.H. Greene, Phys. Rev. A 83, 030702(R) (2011).
[33] Y. Suzuki and K. Varga: Stochastic Variational Approach to Quantum-Mechanical Few- Body Problems (Springer, Berlin, 1998); J. von Stecher and C.H. Greene, Phys. Rev. A 80, 022504 (2009).
[34] Jan R. Rubbmark, et al., Phys. Rev. A 23, 3107 (1981).
[35] Alexey V. Gorshkov, et al., Phys. Rev. A 84, 033619 (2011).
[36] H. H. Sorensen, M. S. thesis, University of Aarhus, 2005 [e-print arXiv:cond- mat/0502126].