簡易檢索 / 詳目顯示

研究生: 林義翔
Lin, I-Hsiang
論文名稱: 以超(次)臨界流體技術製備複材及量測CO2膨脹溶液中之擴散係數
Prepartion of Polymer Composite in Sub/Supercritical Fluid and Measurement of Diffusion Coefficients in CO2-Expanded Liquids
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 154
中文關鍵詞: 超臨界流體超臨界流體含浸法壓縮流體反溶劑法複合材料二氧化碳膨脹溶液擴散係數
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在以超(次)臨界流體技術製備複材及量測二氧化碳膨脹溶液系統之擴散係數。內容分為四個章節說明,各章節內容摘要分述如下:
    第一章 ”緒論”說明超臨界流體的基本物性,並就超臨界流體應用在高分子製程上的特性與有機溶劑經高壓氣體膨脹後的溶液特性做一說明。
    第二章介紹以超臨界流體含浸法製備TiO2/PC和TiO2/PET複合材料。當高分子材料置於超臨界流體時,可由調整壓力與溫度來改變高分子被超臨界流體膨脹的程度,並趨使TiO2奈米粒子能被流體挾帶入高分子內。本章探討三種不同機制的含浸方式,其中以當高分子薄膜事先浸泡在含懸浮TiO2奈米粒子的溶液中,然後再通入高壓CO2的含浸方式可以得到較佳之含浸效果,然而所觀察到TiO2的含浸皆發生在高分子的表面上。
    第三章利用連續式壓縮流體反溶劑法製備複合材料,其中包含製備TiO2/PS奈米複合粒子、PMMA微粒和PS/PMMA混摻高分子。當將含有懸浮TiO2奈米粒子的高分子溶液經由噴嘴噴入充滿反溶劑之沈澱槽時,溶液中的溶劑會擴散進入反溶劑中而被帶出沈澱槽外,此時PS會因為達到過飽和而在TiO2粒子表面上析出而生成TiO2/PS複合粒子。在改變不同操作變數後,可知當操作溫度為298 K,操作壓力為6.41 MPa,反溶劑液面佔1/4沈澱槽高度,PS濃度為0.72 wt%,PS與TiO2添加比例為8時,可以得到TiO2/PS Core/Shell型態的複合粒子。由於PMMA很容易受CO2的塑化而不易在高壓CO2中生成球狀PMMA微粒,因此本操作在不添加任何穩定劑的前提下進行,以探討不同操作變數下所得到之PMMA微粒型態。由實驗結果可知當操作在溫度為298 K,壓力為6.41 MPa,高分子溶液流速為5 mL/min,CO2流率為2000 mL/min,液相CO2的液面在1/8沈澱槽高度,PMMA高分子溶液濃度小於或等於1 wt%時,可以得到次微米級的PMMA球狀微粒。在製備PS/PMMA混摻高分子時,當操作溫度為298 K,壓力為6.41 MPa,高分子溶液流率為5 mL/min,CO2流率為2000 mL/min,液相CO2的液面在1/4沈澱槽高度以上時,使用高分子溶液濃度在1 wt%以下時,可以得到大多數為次微米級之混摻高分子微粒;使用濃度在2至8 wt%時,可得到微米級與次微米級之微粒。當添加之PS/PMMA比例為9/1,液相CO2的液面在1/2沈澱槽高度,PS分子量為144,000和PMMA分子量為36,000時,可得到主要型態為PS/PMMA Core/Shell的混摻高分子產物。
    第四章主要進行溶質在二氧化碳膨脹溶液中之擴散係數量測。在氫化反應中,由於氫氣在有機溶劑中之溶解度不高,氣液間也存在界面質傳阻力,此外液體中的擴散阻力也會對反應速率造成限制。當有機溶劑中加入高壓CO2時,會形成二氧化碳膨脹溶液,除了可增加氫氣在溶液中的溶解度外,也會因溶劑體積膨脹而導致液體密度與黏度的降低,因而減少液相中之擴散阻力。本章節為量測對氯硝基苯在二氧化碳膨脹甲醇溶液與量測苯甲腈在二氧化碳膨脹乙醇溶液中之擴散係數,探討變數包含溶液中之CO2濃度、溫度與壓力等。由實驗結果可知溶質在二氧化碳膨脹溶液中的擴散係數較在純溶液中為高,且隨著溶液中二氧化碳含量的增加而愈有利於溶質的擴散。在固定壓力下,溶質的擴散係數會隨溫度上升而增加;在固定溫度下,溶質的擴散係數會隨溶液壓力的增加而下降。針對不同之擴散系統可建立對應之擴散係數關聯方程式。


    The preparation of polymer composites using sub/supercritical fluids and the measurement of diffusion coefficients in CO2-expanded liquids are included in this dissertation. There are four chapters, which are organized as follows:
    In Chapter 1, the physical properties of supercritical fluids, and the applications of supercritical fluids in polymer processing as well as the characteristic properties of gas-expanded liquids were described.
    In Chapter 2, the preparation of TiO2/PC and TiO2/PET composites using supercritical impregnation was investigated. The extent of polymer expansion could be controlled by adjusting the pressure and temperature of supercritical fluids and the impregnation of TiO2 nanoparticles into the polymer matrix with supercritical fluids was therefore achived. Three different mechanisms of impregnation were studied in this chapter, and the optimum way of impregnation was found when the polymer film was immersed in the suspension solution of TiO2 prior to the introduction of compressed CO2 into the solution. However, the impregnation of TiO2 in this study was observed to occur only on the polymer surface.
    In Chapter 3, the preparation of polymer composites including TiO2/PS nanocomposites, PMMA particles, and PS/PMMA blending polymers by using continuous PCA method was studied. When the polymer solution with suspended TiO2 was sprayed into an antisolvent environment through a nozzle, the supersaturation of PS was achieved and the precipitation of PS on TiO2 surface occurred. The morphology of TiO2/PS core/shell structure was obtained for a temperature of 298 K, a pressure of 6.41 MPa, a liquid CO2 level in the precipitator of 1/4, a PS concentration of 0.72 wt%, and a PS/TiO2 ratio of 8. Due to the facile adsorption of CO2 in PMMA, spherical PMMA particles were not easily formed in compressed CO2 environment. In this chapter, the preparation of PMMA particles without adding any stabilizers was conducted by adjusting several operating variables, and the spherical PMMA submicron-sized particles were obtained for a temperature of 298 K, a pressure of 6.41 MPa, a polymer solution of 5 mL/min, a CO2 flow rate of 2000 mL/min, a liquid CO2 level in the precipitator of 1/8, and a PS concentration equal to or less than 1 wt%. In the preparation of PS/PMMA blends, the obtained blends were mostly in submicron-sized particles for a temperature of 298 K, a pressure of 6.41 MPa, a polymer solution of 5 mL/min, a CO2 flow rate of 2000 mL/min, a liquid CO2 level in the precipitator of above 1/4, and a blending polymer concentration equal to or less than 1 wt%. When the blending polymer concentrations ranged between 2 and 8 wt%, the obtained blends were shown in submicron and micron-sized particles. By the way, a spherical blending polymer of PS/PMMA core/shell morphology could be observed for a PS/PMMA ratio of 9/1, a liquid CO2 level in the precipitator of 1/2, a PS molecular weight of 144,000, and a PMMA molecular weight of 36,000.
    In Chapter 4, the measurement of diffusion coefficients of solutes in CO2-expanded liquids was described. Due to the low solubility of hydrogen in organic solvents, and the existence of interfacial resistance between gas and liquid phases, as well as the resistance of diffusion within the liquid, the reaction rate of hydrogenation reaction would be limited. When compressed CO2 was dissolved into the organic liquids, CO2-expanded liquids (CXLs) were formed. In CXLs, the solubility of hydrogen in organic liquids increased, and the density and viscosity of organic liquids decreased and thus the resistance of diffusion within liquids decreased. The diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol and the diffusion coefficients of benzonitrile in CO2-expanded ethanol were investigated in this chapter. Several variables including temperature, pressure, and the CO2 concentration in organic liquids were studied. It was found that the diffusion coefficients of solutes in CXLs were higher than those in pure liquids, indicating the benefit of the dissolution of CO2 in liquids for diffusion. For a fixed pressure, the diffusion coefficients of solutes were observed to increase with temperature. The diffusion coefficients of solutes were also found to decrease with increasing pressure at a fixed temperature. The corresponding equations of diffusion coefficients were established according to different systems of diffusion.

    摘要 I Abstract III 致謝辭 VI 目錄 VII 表目錄 X 圖目錄 XII 第一章、緒論 1 第二章、超臨界流體含浸法製備複合材料 4 2-1 前言 4 2-2 文獻回顧 4 2-2-1 超臨界CO2與高分子間溶解度關係 5 2-2-2 高分子熔點與玻璃轉化溫度的改變 8 2-2-3 CO2輔助含浸高分子 9 2-3 實驗方法 10 2-3-1 實驗藥品 10 2-3-2 實驗步驟 11 2-3-2-1 方法A 11 2-3-2-2 方法B 11 2-3-2-3 方法C 12 2-3-3 實驗裝置圖 13 2-4 結果與討論 14 2-4-1 方法A進行高分子之含浸 15 2-4-2 方法B進行高分子之含浸 18 2-4-3 方法C進行高分子之含浸 20 2-5 結論 21 第三章、利用連續式壓縮流體反溶劑法製備高分子複合粒子 22 3-1 前言 22 3-2 文獻回顧 23 3-3 實驗部份 38 3-3-1 實驗藥品 38 3-3-2 實驗使用儀器 39 3-3-3 製備PS/ZnO複合粒子實驗裝置圖 41 3-3-4 製備PMMA微粒與PMMA/PS混摻粒子實驗裝置圖 43 3-4 結果與討論 45 3-4-1 連續式PCA法製備PS/TiO2複合粒子 45 3-4-1-1 TiO2奈米粒子穩定性測試 45 3-4-1-2 添加分散劑的影響 45 3-4-1-3 溫度與壓力的影響 46 3-4-1-4 液相CO2液面高度的影響 47 3-4-1-5 PS/TiO2比率的影響 49 3-4-1-6 PS濃度的影響 53 3-4-1-7 製備TiO2/PS複合粒子實驗之結論 55 3-4-2 連續式PCA法製備PMMA微粒 55 3-4-2-1 溫度與壓力的影響 55 3-4-2-2 液相CO2液面高度的影響 57 3-4-2-3 溶劑與PMMA分子量的影響 58 3-4-2-4 CO2乾燥條件之影響 62 3-4-2-5 PMMA濃度之影響 63 3-4-2-6 製備PMMA微粒實驗之結論 68 3-4-3 連續式PCA法製備PS/PMMA混摻高分子 68 3-4-3-1 混摻高分子分子量與PS/PMMA添加比例之影響 68 3-4-3-2 混摻高分子的分子量分析 77 3-4-3-3 溫度與壓力的影響 78 3-4-3-4 液相CO2液面高度的影響 80 3-4-3-5 不同溶劑的影響 81 3-4-3-6 混摻高分子溶液流率的影響 82 3-4-3-7 CO2流率的影響 84 3-4-3-8 混摻高分子濃度的影響 85 3-4-3-9 製備PMMA微粒與PMMA/PS混摻高分子實驗之結論 92 第四章、二氧化碳膨脹溶液中之擴散係數量測 94 4-1 前言 94 4-2 文獻回顧 95 4-3 實驗方法 100 4-3-1 實驗藥品 100 4-3-2 實驗使用儀器 100 4-3-3 實驗裝置圖 102 4-3-4 實驗步驟 102 4-4 結果與討論 104 4-4-1 對氯硝基苯/二氧化碳膨脹甲醇溶液系統 104 4-4-2 苯甲腈/二氧化碳膨脹乙醇溶液系統 116 4-5 結論 124 參考文獻 125 符號說明 143 附錄 146 作者介紹 154

    Abraham, G. A.; Gallardo, A.; Motta, A.; Migliaresi, C. and San Román, J. “Microheterogeneous Polymer Systems Prepared by Suspension Polymerization of Methyl Methacrylate in the Presence of Poly(ε-caprolactone)” Macromol. Mater. Eng., 282, 44-50, 2000.

    Arai, Y.; Sako, T. and Takebayashi, Y. Supercritical Fluids Molecular Interactions, Phyysical Properties, and New Applications; Springer-Verlag Berlin Heidelberg, New York, 2002.

    Aris, R. ”On the Dispersion of a Solute in a Fluid Flowing through a Tube” Proc. R. Soc. London, Ser. A, 235, 67-77, 1956.

    Arora, K. A.; Lesser, A. J. and McCarthy, T. J. “Synthesis, Characterization, and Expansion of Poly(tetrafluoroethylene-co-hexafluoropropylene)/Polystyrene Blends Processed in Supercritical Carbon Dioxide” Macromolecules, 32, 2562-2568, 1999.

    Bayraktar, Z. and Kiran, E. “Gradient Blending of Poly(dimethylsiloxane) with Polystyrene and Polyethylene in Supercritical Carbon Dioxide” J. Supercrit. Fluids, 44, 48-61, 2008.

    Benedetti, L.; Bertucco, A. and Pallado, P. “Production of Micronic Particles of Biocompatible Polymer Using Supercritical Carbon Dioxide” Biotechnol. Bioeng., 53, 232-237, 1997.

    Berens, A. R.; Huvard, G. S.; Krosmeyer, R. W. and Kuing, F. W. ”Application of Compressed Carbon Dioxide in the Incorporation of Additives into Polymers” J. Appl. Polym. Sci., 46, 231-242, 1992.
    Bertucco, A.; Lora, M. and Kikic, I. “Fractional Crystallization by Gas Antisolvent Technique: Theory and Experiments” AIChE J., 44, 2149-2158, 1998.

    Blasig, A.; Shi, C.; Enick, R. M. and Thies, M. C. “Effect of Concentration and Degree of Saturation on RESS of a CO2-Soluble Fluoropolymer” Ind. Eng. Chem. Res., 41, 4976-4983, 2002.

    Boutin, O.; Badens, E.; Carretier, E. and Charbit, G. “Co-Precipitation of a Herbicide and Biodegradable Materials by the Supercritical Anti-Solvent Technique” J. Supercrit. Fluids, 31, 89-99, 2004.

    Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A. and Bloch, D. R. Polymer Handbook, 4th ed.; John Wiley & Sons, Inc., Hoboken, New Jersey, 1999.

    Busby, A. J.; Zhang, J.; Naylor, A.; Roberts, C. J.; Davies, M. C.; Tendler, S. J. B. and Howdle, S. M. “The Preparation of Novel Nano-Structured Polymer Blends of Ultra High Molecular Weight Polyethylene with Polymethacrylates Using Supercritical Carbon Dioxide” J. Mater. Chem., 13, 2838-2844, 2003.

    Calderone, M. and Tallon, S. “Particle Formation by Rapid Expansion from Solution Using Near-Critical Dimethyl-Ether” J. Supercrit. Fluids, 45, 245-252, 2008.

    Chan, J. C. and Tan, C. S. “Hydrogenation of Tetralin over Pt/γ-Al2O3 in Trickle-Bed Reactor in the Presence of Compressed CO2” Energy Fuels, 20, 771-777, 2006.

    Chang, C. J. and Randolph, A. D. “Solvent Expansion and Solute Solubility Predictions in Gas-Expanded Liquids” AIChE J., 36, 939-942, 1990.

    Chang, C. J.; Randolph, A. D. and Craft, N. E. “Separation of β-Carotene Mixtutes Precipitated from Liquid Solvents with High-Pressure CO2” Biotech. Prog., 7, 275-278, 1991.

    Chang, Y.; Xu, Q.; Liu, M.; Wang, Y. and Zhao, Q. “Supercritical CO2-Assisted Synthesis of Poly(acrylic acid)/Nylon1212 Blend” J. Appl. Polym. Sci., 90, 2040-2044, 2003.

    Chang, Y.; Xu, Q.; Han, B.; Wang, Y.; Liu, M. and Zhao, Q. “Supercritical CO2 Assisted Processing of Polystyrene/Nylon 1212 Blends and CO2-Induced Epitaxy on Nylon 1212” J. Appl. Polym. Sci., 92, 2023-2029, 2004.

    Chen, Y. C. and Tan, C. S. “Hydrogenation of p-Chloronitrobenzene by Ni-B Nanocatalyst in CO2-Expanded Methanol” J. Supercrit. Fluids, 41, 272-278, 2007.

    Cloete, C. E.; Smuts, T. W. and Clerk, K. D. ”The Gas Chromatographic Determination of Binary Diffusion Coefficients” J. Chromatogr., 120, 1-15, 1976.

    Combes, G.; Coen, E.; Dehghani, F. and Foster, N. “Dense CO2 Expanded Methanol Solvent System for Synthesis of Naproxen via Enantioselective Hydrogenation” J. Supercrit. Fluids, 36, 127-136, 2005.

    Condo, P. D.; Sanchez, I. C.; Panayiotou, C. G. and Johnston, K. P. “Glass Transition Behavior Including Retrograde Vitrification of Polymers with Compressed Fluid Diluents” Macromolecules, 25, 6119-6127, 1992.

    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems, 1st Edition Publisher, 1984.

    Dixon, D. J. and Johnston, K. P. “Molecular Thermodynamics of Solubilities in Gas Antisolvent Crystallization” AIChE J., 37, 1441-1449, 1991.
    Dixon, D. J. and Johnston, K. P. “Polymeric Materials Formed by Precipitation with a Compressed Fliud Antisolvent” AIChE J., 39, 127-139, 1993a.

    Dixon, D. J. and Johnston, K. P. “Formation of Microporous Polymer Fibers and Oriented Fibrils by Precipitation with a Compressed Fluid Antisolvent” J. Appl. Polym. Sci., 50, 1929-1942, 1993b.

    Dixon, D. J.; Gabriel, L. B. and Johnston, K. P. “Microcellular Microspheres and Microballoons by Precipitation with a Vapor-Liquid Compressed Fluid Antisolvent” Polymer, 35, 18, 3998-4005, 1994.

    Duarte, A. R. C.; Gordillo, M. D.; Cardoso, M. M.; Simplício, A. L. and Duarte, C. M. M. “Preparation of Ethyl Cellulose/Methyl Cellulose Blends by Supercritical Antisolvent Precipitation” Int. J. Pharm., 311, 50-54, 2006.

    Eckert, C. A.; Liotta, C. L.; Bush, D.; Brown, J. S. and Hallett, J. P. J. “Sustainable Reactions in Tunable Solvents” J. Phys. Chem. B, 108, 18108-18118, 2004.

    Elkovitch, M. D.; Tomasko, D. L. and Lee, L. J. “Supercritical Carbon Dioxide Assisted Blending of Polystyrene and Poly(methyl methyacrylate)” Polym. Eng. Sci., 39, 2075-2084, 1999.

    Elkovitch, M. D.; Lee, L. J. and Tomasko, D. L. “Effect of Supercritical Carbon Dioxide on Morphology Development During Polymer Blending” Polym. Eng. Sci., 40, 1850-1861, 2000.

    Elkovitch, M. D.; Lee, L. J. and Tomasko, D. L. “Effect of Supercritical Carbon Dioxide on PMMA/Rubber and Polystyrene/Rubber Blending: Viscosity Ratio and Phase Inversion” Polym. Eng. Sci., 41, 2108-2125, 2001.
    Falk, R.; Randolph, A. D.; Meyer, J. D.; Kelly, R. M. and Manning, M. C. “Controlled Release of Ionic Compounds from Poly(L-lactide) Microspheres Produced by Precipitation with a Compressed Antisolvent” J. Control. Release, 44, 77-85, 1997.

    Fan, H. A. and Tan, C. S. “Morphology and Size of Cycloolefin Copolymer Precipitated from Toluene Solution Using Compressed CO2 as Antisolvent” Sep. Sci. Technol., 39, 3453-3469, 2004.

    Fujita, S.; Akihara, S.; Zhao, F.; Liu, R.; Hasegawa, M. and Arai, M. “Selective Hydrogenation of Cinnamaldehyde Using Ruthenium-Phosphine Complex Catalysts with Multiphase Reaction Systems in and under Pressurized Carbon Dioxide: Significance of Pressurization and Interfaces for the Control of Selectivity” J. Catal., 236, 101-111, 2005.

    Funazukuri, T. and Nishimoto, N. “Tracer Diffusion Coefficients of Benzene in Dense CO2 at 313.2 K and 8.5-30 MPa” Fluid Phase Equilib., 125, 235-243, 1996.

    Funazukuri, T.; Kong, C. Y.; Murooka, N. and Kagei, S. “Measurement of Binary Diffusion Coefficient and Partition Ratios for Acetone, Phenol, α-Tocopherol, and β-Carotene in Supercritical Carbon Dioxide with a Poly(ethylene glycol)-Coated Capillary Column” Ind. Eng. Chem. Res., 39, 4462-4469, 2000.

    Gallagher, P. M.; Coffey, M. P. and Krukonis, V. J. “Gas Anti-Solvent Recrystallization of RDX: Formation of Ultra-Fine Particles of a Difficult-to-Comminute Explosive” J. Supercrit. Fluids, 5, 130-142, 1992.

    Gokhale, A.; Khusid, B.; Dave, R. N. and Pfeffer, R. “Effect of Solvent Strength and Operating Pressure on the Formation of Submicrometer Polymer Particles in Supercritical Microjets” J. Supercrit. Fluids, 43, 341-356, 2007.

    Golay, M. J. E. In Gas Chromatography; Desty, D. H., Ed.; Butterworth: London, 1958.

    Han, S. J.; Lohse, D. J.; Radosz, M. and Sperling, L. H. “Morphologies of Blends of Isotactic Polypropylene and Ethylene Copolymer by Rapid Expansion of Supercritical Solution and Isobaric Crystallization from Supercritical Solution” J. Appl. Polym. Sci., 77, 1478-1487, 2000.

    Hemminger, O.; Marteel, A.; Mason, M. R.; Davies, J. A.; Tadd, A. R. and Abraham, M. A. “Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 3. Evaluation of Solvent Effect” Green Chem., 4, 507-512, 2002.

    Hsu, R. Y.; Tan, C. S. and Chen, J. M. “Formation of Micron-Sized Cycloolefin Copolymer from Toluene Solution Using Compressed HFC-134a as Antisolvent” J. Appl. Polym. Sci., 84, 1657-1668, 2002.

    Jessop, P. G. and Subramaniam, B. “Gas-Expanded Liquids” Chem. Rev., 107, 2666-2694, 2007.

    Jin, H. and Subramaniam, B. “Homogeneous Catalytic Hydroformylation of 1-Octene in CO2-Expanded Solvent Media” Chem. Eng. Sci., 59, 4887-4893, 2004.

    Jung, J. and Perrut, M. “Particle Design Using Supercritical Fluids: Literature and Patent Survey” J. Supercrit. Fluids, 20, 179-219, 2001.

    Kazarian, S. G.; Vincent, M. F.; Bright, F. V.; Liotta, C. L. and Eckert, C. A. “Specific Intermolecular Interaction of Carbon Dioxide with Polymers” J. Am. Chem. Soc., 118, 1729-1736, 1996.

    Kerler, B.; Robinson, R. E.; Borovik, A. S. and Subramaniam, B. “Application of CO2-Expanded Solvents in Heterogeneous Catalysis: A Case Study. Appl. Catal. B-Environ., 49, 91-98, 2004.

    Khan, F.; Czechura, K. and Sundararajan, P. R. “Modification of Morphology of Polycarbonate/Thermoplastic Elastomer Blends by Supercritical CO2” Eur. Polym. J., 42, 2899-2904, 2006.

    Kim, J. H.; Paxton, T. E. and Tomasko, D. L. “Microencapsulation of Naproxen Using Rapid Expansion of Supercritical Solutions” Biotechnol. Prog., 12, 650-661, 1996.

    Kong, C. Y.; Withanage, N. R. W.; Funazukuri, T. and Kagei, S. “Binary Diffusion Coefficients and Retention Factors for γ-Linolenic Acid and Its Methyl and Ethyl Esters in Supercritical Carbon Dioxide” J. Supercrit. Fluids, 37, 63-71, 2006.

    Kordikowski, A.; Schenk, A. P.; Van Nielen, R. M. and Peters, C. J. “Volume Expansions and Vapor–Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents” J. Supercrit. Fluids, 8, 205-216, 1995.

    Kung, E.; Lesser, A. J. and McCarthy, T. J. “Composites Prepared by the Anionic Polymerization of Ethyl 2-Cyanoacrylate within Supercritical Carbon Dioxide-Swollen Poly(tetrafluoroethylene-co-hexafluoropropylene)” Macromolecules, 33, 8192-8199, 2000.

    Lai, C. C. and Tan, C. S. “Measurement of Molecular Diffusion Coefficient in Supercritical Carbon Dioxide Using a Coated Capillary Column” Ind. Eng. Chem. Res., 34, 674-680, 1995.

    Lauer, H. H.; McManigill, D. and Board, R. D. ”Mobile-Phase Transport Properties of Liquefied Gases in Near-Critical and Supercritical Fluid Chromatography” Anal. Chem., 55, 1370-1375, 1983.

    Lee, S. T. and Olesik, S. V. “Comparison of Enhanced-Fluidity and Elevated-Temperature Mobile Phases in Reversed-Phase High-Performance Liquid Chromatography” Anal. Chem., 66, 4498-4506, 1994.

    Li, D. and Han, B. ”Impregnation of Polyethylene(PE) with Styrene Using Supercritical CO¬2 as the Swelling Agent and Preparation of PE/Polystyrene” Ind. Eng. Chem. Res., 31, 4506-4509, 2000.

    Li, D.; Liu, Z.; Yang, G.; Han, B. and Yan, H. “Phase Equilibria of CO2-PET-Phenol System and Generation of PET Powders by Supercritical CO2 Anti-solvent,” Polymer, 41, 5707-5712, 2000.

    Li, D.; Liu, Z.; Han, B.; Song, L.; Yang, G. and Jiang, T. “Preparation of Nanometer Dispersed Polypropylene/Polystyrene Interpenetrating Network Using Supercritical CO2 as a Swelling Agent” Polymer, 43, 5363-5367, 2002.

    Lin, I. H. and Tan, C. S. “Diffusion of Benzonitrile in CO2-Expanded Ethanol” J. Chem. Eng. Data, 53, 1886-1891, 2008.

    Lin, I. H. and Tan, C. S. “Measurement of Diffusion Coefficients of p-Chloronitrobenzene in CO2-Expanded Methanol” J. Supercrit. Fluids, 46, 112-117, 2008.
    Liong, K. K.; Wells, P. A. and Foster, N. R. “Diffusion Coefficients of Long-Chain Esters in Supercritical Carbon Dioxide” Ind. Eng. Chem. Res., 30, 1329-1335, 1991.

    Liu, Z.; Wang, J.; Dai, X.; Han, B.; Dong, Z.; Yang, G.; Zhang, X. and Xu, J. “Synthesis of Composites of Silicon Rubber and Polystyrene Using Supercritical CO2 as a Swelling Agent” J. Mater. Chem., 12, 2688-2691, 2002.

    Liu, J.; Liu, T. and Kumar, S. “Effect of Solvent Solubility Parameter on SWNT Dispersion in PMMA” Polymer, 46, 3419-3424, 2005.

    Marcus, Y. “Are Solubility Parameters Relevant to Supercritical Fluids” J. Supercrit. Fluids, 38, 7-12, 2006.
    Matsuyama, K.; Zhang, D.; Urabe, T. and Mishima, K. “Formation of L-poly(lactic acid) Microspheres by Rapid Expansion of CO2 Saturated Polymer Suspensions” J. Supercrit. Fluids, 33, 275-281, 2005.

    Mawson, S.; Kanakia, S. and Johnston, K. P. “Coaxial Nozzle for Control of Particle Morphology in Precipitation with a Compressed Fluid Antisolvent” J. Appl. Polym. Sci., 64, 2105-2118, 1997a.

    Mawson, S.; Johnston, K. P. and Betts, D. E. “Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 1. Poly(fluoro acrylates)” Macromolecules, 30, 71-77, 1997b.

    Mawson, S.; Kanakia, S. and Johnston, K. P. “Metastable Polymer Blends by Precipitation with a Compressed Fluid Antisolvent” Polymer, 38, 2957-2967, 1997c.

    McHugh, M. A. and Guckes, C. L. “Separating Polymer Solutions with Supercritical Fluids” Macromolecules, 18, 674-680, 1985.

    Meziani, M. J.; Pathak, P.; Beacham, F.; Allard, L. F. and Sun, Y. P. “Nanoparticle Formation in Rapid Expansion of Water-in-Supercritical Carbon Dioxide Microemulsion into Liquid Solution”J. Supercrit. Fluids, 34, 91-97, 2005.

    Mizutani, H.; Shikuma, H.; Kihara, S. I. and Ohshima, M. “CO2 Assisted Infusion of Carbon Nanotube into Thermoplastic Polymer Surface” Japan-Korea Joint Symposium, 2004, Ohita, Japan.

    Mizutani, H.; Suzuki, T.; Kihara, S. I. and Ohshima, M. ”Infusion to Polymer Surface from Liquid Phase of Carbon Dioxide and Solute Mixture” International Symposium on Supercritical Fluids, ISSF 2005, 1 May, Orlando, FL, USA.

    Moulijn, J. A.; Spijker, R. and Kolk, J. F. M. “Axial Dispersion of Gases Flowing through Coiled Columns” J. Chromatogr., 142, 155-166, 1977.

    Muhrer, G. and Mazzotti, M. “Precipitation of Lysozyme Nanoparticles from Dimethyl Sulfoxide Using Carbon Dioxide as Antisolvent” Biotechnol. Prog., 19, 549-556, 2003.

    Musie, G.; Wei, M.; Subramaniam, B. and Busch, D. H. “Catalytic Oxidations in Carbon Dioxide-Based Reaction Media, Including Novel CO2-Expanded Phases” Coord. Chem. Rev., 219, 789-820, 2001.

    Nalawade, S. P.; Picchioni, F. and Janssen, L. P. B. M. “Supercritical Carbon Dioxide as a Green Solvent for Processing Polymer Melts: Processing Aspects and Applications” Prog. Polym. Sci., 31, 19-43, 2006.

    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, USA, March, 2003 (http://webbook.nist.gov)

    Okubo, M.; Izumi, J. and Takekoh, R. “Production of Micron-Sized Monodispersed Core/Shell Composite Polymer Particles by Seeded Dispersion Polymerization” Colloid Polym. Sci., 277, 875-880, 1999.

    Olesik, S. V. and Woodruff, J. L. ”Liquid Mass-Transport Theories Applied to Molecular Diffusion in Binary and Ternary Supercritical Fluid Mixtures” Anal. Chem., 63, 670-676, 1991.

    O’Neill, M. L.; Cao, Q.; Fang, M.; Johnston, K. P.; Wilkinson, S. P.; Smith, C.; Kerschner, J. L. and Jureller, S. H. ”Solubility of Homopolymers and Copolymers in Carbon Dioxide” Ind. Eng. Chem. Res., 37, 3067-3079, 1998.

    Ostle, B. and Mensing, R.W. Statistics in Research, 3rd ed., The Iowa State University Press, Ames, Iowa, 1975.

    Owens, J. L.; Anseth, K. S. and Randolph, T. W. “Compressed Antisolvent Precipitation and Photopolymerization to Form Highly Cross-Linked Polymer Particles” Macromolecules, 35, 4289-4296, 2002.

    Pöhler, H. and Kiran, E. “Volumetric Properties of Carbon Dioxide + Ethanol at High Pressures” J. Chem. Eng. Data, 42, 384-388, 1997.

    Poling, B. E.; Prausnitz, J. M. and O’Connell, J. P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, 2001.

    Rajagopalan, P. and McCarthy, T. J. “Two-Step Surface Modification of Chemically Resistant Polymers: Blend Formation and Subsequent Chemistry” Macromolecules, 31, 4791-4797, 1998.
    Rajagopalan, B.; Wei, M.; Musie, G. T.; Subramaniam, B. and Busch, D. H. “Homogeneous Catalytic Epoxidation of Organic Substrates in CO2-Expanded Solvents in the Presence of Water-Soluble Oxidants and Catalysts” Ind. Eng. Chem. Res., 42, 6505-6510, 2003.

    Randolph, T. W.; Randolph, A. D.; Mebes, M. and Yeung, S. “Sub-Micrometer-Sized Particles of Poly(L-lactic acid) via the Gas Antisolvent Spray Precipitation Process” Biotechnol. Prog., 9, 429-435, 1993.

    Reighard, T. S.; Lee, S. T. and Olesik, S. V. “Determination of Methanol/CO2 and Acetonitrile/CO2 Vapor-Liquid Phase Equilibria Using a Variable-Volume View Cell” Fluid Phase Equilib., 123, 215-230, 1996.

    Reverchon, E.; Porta, G. D.; Trolio, A. D. and Pace, S. “Supercritical Antisolvent Precipitation of Nanoparticles of Superconductor Precursors” Ind. Eng. Chem. Res., 37, 952-958, 1998.

    Reverchon, E. “Supercritical Antisolvent Precipitation of Micro- and Nano-Particles” J. Supercrit. Fluids, 15, 1-21, 1999.

    Reverchon, E.; Della Porta, G.; Sannino, D. and Ciambelli, P. “Supercritical Antisolvent Precipitation of Nanoparticles of A Zinc Oxide Precursor” Powder Technol., 102, 127-134, 1999.

    Reverchon, E.; Porta, G. D.; Rosa, I. D.; Subra, P. and Letourneur, D. “Supercritical Antisolvent Micronization of Some Biopolymers” J. Supercrit. Fluids, 18, 239-245, 2000.

    Reverchon, E.; De Marco, I.; Adami, R. and Caputo, G. “Expanded Micro-Particles by Supercritical Antisolvent Precipitation: Interpretation of Results” J. Supercrit. Fluids, 44, 98-108, 2008.

    Sane, A.; Taylor, S.; Sun, Y. P. and Thies, M. C. “RESS for the Preparation of
    Fluorinated Porphyrin Nanoparticles” Chem. Commun., 2720-2721, 2003.

    Sassiat, P. R.; Mourier, P.; Caude, M. H. and Rosset, R. H. ”Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang” Anal. Chem., 59, 1164-1170, 1987.

    Schnitzler, J. V. and Eggers, R. “Mass Transfer in Polymers in a Supercritical CO2-Atmosphere” J. Supercrit. Fluids, 16, 81-92, 1999.

    Shariati, A. and Peters, C. J. “Measurements and Modeling of the Phase Behavior of Ternary System of Interest for the GAS Process: I. The System Carbon Dioxide + 1-Propanol + Salicylic Acid” J. Supercrit. Fluids, 23, 195-208, 2002.

    Shieh, Y. T.; Su, J. H.; Manivannan, G.; Lee, P. H. C.; Sawan, S. P. and Spall, W. D. “Interaction of Supercritical Carbon Dioxide with□olymers. I. Crystalline Polymers” J. Appl. Polym. Sci., 59, 695-705, 1996a.

    Shieh, Y. T.; Su, J. H.; Manivannan, G.; Lee, P. H. C.; Sawan, S. P. and Spall, W. D. “Interaction of Supercritical Carbon Dioxide with□olymers. II. Amorphous Polymers” J. Appl. Polym. Sci., 59, 707-717, 1996b.

    Shieh, Y. T. and Lin, Y. G. ”Equilibrium Solubility of CO2 in Rubbery EVA
    over a Wide Pressure Range: Effects of Carbonyl Group Content and Crystallinity” Polymer, 43, 1849-1856, 2002.

    Shieh, Y. T.; Liu, K. H. and Lin, T. L. “Effect of Supercritical CO2 on Morphology of Compatible Crystalline/Amorphous PEO/PMMA Blends” J. Supercrit. Fluids, 28, 101-112, 2004.

    Sih, R.; Dehghani, F. and Foster, N. R. “Viscosity Measurements on Gas Expanded Liquid Systems-Methanol and Carbon Dioxide” J. Supercrit. Fluids, 41, 148-157, 2007.

    Silva, C. M.; Filho, C. A.; Quadri, M. B. and Macedo, E. A. “Binary Diffusion Coefficients of α-Pinene and β-Pinene in Supercritical Carbon Dioxide” J. Supercrit. Fluids, 32, 167-175, 2004.

    Siripurapu, S.; Gay, Y. J.; Royer, J. R.; DeSimone, J. M.; Spontak, R. J. and Khan, S. A. “Generation of Microcellular Foams of PVDF and Its Blends Using Supercritical Carbon Dioxide in a Continuous Process” Polymer, 43, 5511-5520, 2002.

    Souvignet, I. and Olesik, S. V. “Molecular Diffusion Coefficient in Ethanol/Water/Carbon Dioxide Mixtures” Anal. Chem., 70, 2783-2788, 1998.

    Stephan, K. and Lucas, K. Viscosity of Dense Fluids; Plenum: New York, 1979.

    Sun, C. K. J. and Chen, S. H. “Tracer Diffusion of Aromatic Hydrocarbons in Liquid Cyclohexane Up to Its Critical Temperature” AIChE J., 31, 1510-1515, 1985.

    Sun, C. K. J. and Chen, S. H. “Tracer Diffusion in Dense Ethanol: A Generalized Correlation for Nonpolar and Hydrogen-Bonded Solvents” AIChE J., 32, 1367-1371, 1986.

    Sun, C. K. J. and Chen, S. H. “Tracer Diffusion in Dense Methanol and 2-Propanol Up to Supercritical Region: Understanding of Solvent Molecular Association and Development of an Empirical Correlation” Ind. Eng. Chem. Res., 26, 815-819, 1987.
    Sun, Y. P.; Guduru, R.; Lin, F. and Whiteside, T. “Preparation of Nanoscale Semiconductors through the Rapid Expansion of Supercritical Solution (RESS) into Liquid Solution” Ind. Eng. Chem. Res., 39, 4663-4669, 2000.

    Sundararaj, U. and Macosko, C. W. “Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization” Macromolecules, 28, 2647-2657, 1996.

    Tan, C. S. and Chang, W. W. “Precipitation of Polystyrene from Toluene with HFC-134a by the GAS Process” Ind. Eng. Chem. Res., 37, 1821-1826, 1998.

    Tan, C. S. and Lin, H. Y. “Precipitation of Polystyrene by Spraying Polystyrene-Toluene Solution into Compressed HFC-134a” Ind. Eng. Chem. Res., 38, 3898-3902, 1999.

    Taylor, S. G. “Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube” Proc. R. Soc. London, Ser. A, 219, 186-203, 1953.

    Taylor, S. G. “Conditions under Which Dispersion of a Solute in a Stream of Solvent Can Be Used to Measure Molecular Diffusion” Proc. R. Soc. London, Ser. A, 225, 473-477, 1954.

    Tomasko, D. L.; Li, H.; Liu, D.; Han, X.; Wingert, M. J.; Lee, L. J. and Koelling, K.W. ”A Review of CO¬2 Applications in the Processing of Polymers ” Ind, Eng. Chem. Res., 42, 6431-6456, 2003.

    Trent, J. S.; Scheinbeim, J. I. and Couchman, P. R. “Ruthenium Tetraoxide Staining of Polymers for Electron Microscopy” Macromolecules, 16, 589-598, 1983.

    Türk, M.; Hils, P.; Helfgen, B.; Schaber, K.; Martin, H. J. and Wahl, M. A. “Micronization of Pharmaceutical Substances by the Rapid Expansion of Supercritical Solutions (RESS): A Promising Method to Improve Bioavailability of Poorly Soluble Pharmaceutical Agents” J. Supercrit. Fluids, 22, 75-84, 2002.

    Vega, A.; Subra, P.; López, A. M.; García, C. A. and Domingo, C. “Supercritical CO2 Antisolvent Precipitation of Polymer Networks of L-PLA, PMMA and PMMA/PCL Blends for Biomedical Applications” Eur. Polym. J., 44, 1081-1094, 2008.

    Wang, J.; Cheng, X.; Yuan, M. and He, J. “An Investigation on the Microcellular Structure of Polystyrene/LCP Blends Prepared by Using Supercritical Carbon Dioxide” Polymer, 42, 8265-8275, 2001.

    Wang, Y.; Dave, R. N. and Pfeffer, R. “Polymer Coating/Encapsulation of Nanoparticles Using a Supercritical Anti-solvent Process” J. Supercrit. Fluids, 28, 85-99, 2004.

    Watkins, J. J. and McCarthy, T. J. “Polymerization of Styrene in Supercritical CO2-Swollen Poly(chlorotrifluoroethylene)” Macromolecules, 28, 4067-4074, 1995.

    Weber, A.; Yelash, L. V. and Kraska, T. “Effect of the Phase Behavior of the Solvent-Antisolvent Systems on the Gas-Antisolvent-Crystallization of Paracetamol” J. Supercrit. Fluids, 33, 107-113, 2005.

    Wei, M.; Musie, G. T.; Busch, D. H. and Subramaniam, B. “CO2-Expanded Solvents: Unique and Versatile Media for Performing Homogeneous Catalytic Oxidations” J. Am. Chem. Soc., 124, 2513-2517, 2002.

    Xiang, H. W.; Laesecke, A. and Huber, M. L. “A New Reference Correlation for the Viscosity of Methanol” J. Phys. Chem. Ref. Data, 35, 1597-1620, 2006.
    Xie, X. F.; Liotta, C. L. and Eckert, C. A. “CO2-Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids” Ind. Eng. Chem. Res., 43, 7907-7911, 2004.

    Xu, Q.; Chang, Y.; He, J.; Han, B. and Liu, Y. “Supercritical CO2-Assisted Synthesis of Poly(acrylic acid)/Nylon6 and Polystyrene/Nylon6 Blends” Polymer, 44, 5449-5454, 2003.

    Xu, D.; Carbonell, R. G.; Kiserow, D. J. and Roberts, G. W. “Hydrogenation of Polystyrene in CO2-Expanded Solvents: Catalyst Poisoning” Ind. Eng. Chem. Res., 44, 6164-6170, 2005.

    Yeo, S. D.; Lim, G. B.; Debenedetti, P. G. and Bernstein, H. “Formation of Microparticulate Protein Powders Using a Supercritical Fluid Antisolvent” Biotechnol. Bioeng., 41, 341-346, 1993.

    Yeo, S. D. and Kiran, E. “Formation of Polymer Particles with Supercritical Fluids: A Review” J. Supercrit. Fluids, 34, 287-308, 2005.

    Young, T. J.; Johnston, K. P.; Mishima, K. and Tanaka, H. “Encapsulation of Lysozyme in a Biodegradable Polymer by Precipitation with a Vapor-over-Liquid Antisolvent” J. Pharm. Sci., 88, 640-650, 1999.

    Zhang, J.; Busby, A. J.; Roberts, C. J.; Chen, X.; Davies, M. C.; Tendler, S. J. B. and Howdle, S. M. “Preparation of a Poly(methyl methacrylate)/Ultrahigh Molecular Weight Polyethylene Blend Using Supercritical Carbon Dioxide and the Identification of a Three-Phase Structure: An Atomic Force Microscopy Study” Macromolecules, 35, 8869-8877, 2002.

    Zhang, J.; Liu, Z.; Han, B.; Li, Z.; Sun, D. and Chen, J. “Ultrasound-Induced Formation of Polymer Capsules by Precipitation with Compressed CO2” Eur. Polym. J., 40, 1349-1353, 2004.

    Zhang, J.; Liu, Z.; Han, B.; Li, J.; Li, Z. and Yang, G. “Ultrasound-Induced Capping of Polystyrene on TiO2 Nanoparticles by Precipitation with Compressed CO2 as Antisolvent” J. Nanosci. Nanotechnol., 5, 945-950, 2005.

    Zhou, X. D.; Zhang, S. C.; Huebner, W. and Ownby, P. D. “Effect of the Solvent on the Particle Morphology of Spray Dried PMMA” J. Mater. Sci., 36, 3759-3768, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE