研究生: |
王冠文 Wang, Kuan-Wen |
---|---|
論文名稱: |
台灣迴旋加速器醫用同位素產製設施之伴隨中子產率與物質活化潛勢的比較分析 A comparative study on the prediction of neutron yields and associated activation of materials for cyclotron-based medical isotope production facilities in Taiwan |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
蔡惠予
Tsai, Hui-Yu 薛燕婉 Liu Hsueh, Yen-Wan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 179 |
中文關鍵詞: | 物質活化 、中子活化 、放射活化殘存量 、迴旋加速器醫用同位素產製設施 、蒙地卡羅模擬 、除役 |
外文關鍵詞: | Material activation, Neutron activation, Cyclotron-based medical isotope production facility, Monte Carlo simulation, FLUKA, Decommissioning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究調查國內現役13部迴旋加速器醫用同位素產製設施的生產紀錄,其運轉以(p,xn)核反應占大宗,尤其是18O(p,n)18F最為常見。為了能夠可靠且全面性地評估臺灣迴旋加速器同位素產製設施的物質活化潛勢,本研究利用FLUKA蒙地卡羅程式深入探討從核反應截面、同位素產率、二次中子的生成與遷移,周遭中子輻射場、以及最後物質活化的物理過程與輻射特性,分析結果並與文獻實驗或計算值比較,驗證本研究所建立模型與參數的合理性。針對前述設施同位素產製所使用的(p,xn)核反應式,本研究考量10組不同靶材及射束能量的假設組態進行模擬分析,並針對照射室內二次中子的能量與空間分布、周圍等效劑量率以及物質活化的結果進行比較。本研究發現並量化確認,當中子產率歸一化後,不同靶材與運轉情節的中子分布、劑量分布與物質活化具有高度的相似性。此一特性有利於不同設施與運轉情節之活化分析的結果互為引用參考,本研究以3種不同的案例示範此一延伸應用,可在合理的誤差範圍內減少不必要的重複模擬計算,有利於相關設施未來除役的準備工作。
This study investigated the production records of 13 cyclotron medical isotope production facilities in Taiwan, and the (p,xn) nuclear reaction are often used in the past, especially 18O(p,n)18F. In order to calculate activation effectively and comprehensively, this study use FLUKA Monte Carlo code to calculate nuclear reaction cross-section, isotope physical yield and secondary neutron yield, neutron spectrum, ambient dose equivalent and the physical process and radiation characteristics of the material activation material activation. The results compared with experimental or calculated values in the literatures verify the acceptable model and parameters applied in this study. For the common (p,xn) nuclear reaction type used in Taiwan, choosing 10 assumed designs of different target and beam energy to calculate and compare the characteristics of neutron spectrum, ambient dose equivalent rate, and material activation in the cyclotron room. After the neutron yield is normalized, the neutron distribution, dose distribution and material activation of different targets and operation scenarios show a high degree of similarity. This feature is beneficial to different facilities and operation scenarios to estimate unknown results of material activation by referring each other. In addition, this study also apply 3 different cases as extended applications to quantify the difference between each (p,xn) reaction channels by the ratio of estimated and FLUKA calculated results. Good matching results can let facilities evaluate the results of other reaction channels within a reasonable range to reduce unnecessary calculations to benefit the preparation of future decommissioning of related facilities.
1. 原能會,放射性物質生產設施除污及除役規劃暨安全審查技術研究年度計畫報告, 2020.
2. NUREG-1575 , EPA 402-R-97-016 , DOE/EG-0624 , “Multi-Agency Radiation Survey and site investigation manual(MARRSIM), Revison 1”, 2000.
3. 放射性物料管理法-定活度或比活度以下放射性廢棄物管理辦法, 2004.
4. European Commission, “Evaluation of the radiological and economic consequences of decommissioning particle accelerators” Report No.19151. Brussel, 1999.
5. European Commission, “Guidance on General Clearance Levels for Practices(Part I)” Report No.122, 2000
6. Kazuyoshi Masumoto, “Decommissioning of cyclotron for medical use and the associated radiation protection in Japan (partI~III)”,AEC conference.Tawian, 2019
7. International atomic energy agency, “Clearance levels for radionuclides in solid materials”. TECDOC-855. Vienna, 1996.
8. International atomic energy agency, “Decommissioning of Small Medical, Industrial and Research Facilities”. TRS-414. Vienna, 2003.
9. International atomic energy agency, “Decommissioning of Medical, Industrial and Research Facilities”. SSG-49. Vienna, 2019.
10. Angelo Infantino et al. “Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field”, Radiat. Phys. Chem.116, 231 (2015).
11. J. Javier et al. “Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX”, Med. Phys. 37, 6015, 2010.
12. Fumiyoshi Nobuhara et al. “Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility”, EPJ Web of Conferences 153. Japan , 0400 (2017).
13. T. Amin et al. “Validating production of PET radionuclides in solid and liquid targets: Comparing Geant4 predictions with FLUKA and measurements”, Appl Radiat Isot 133, 61–67 (2018).
14. A. B. Philips, et al. “Residual Radioactivity in a Cyclotron and its Surroundings” , Health Phys. 51, 337-342 (1986).
15. K. Kimura et al. “Residual long-lived radioactivity distribution in the inner concrete wall of a cyclotron vault”, Health Phys. 67(6):621-631 (1994).
16. R. Calandrino et al. “Decommissioning procedures for an 11 MeV self-shielded medical cyclotron after 16 years of working time”, Health Phys.90(6):588-96 (2006).
17. J. J. Sunderland et al. “Considerations, measurements and logistics associated with low-energy cyclotron decommissioning”, AIP Conference Proceedings 1509, 16 (2012).
18. L. D’Ambrosio et.al “Decommissioning procedures for a 17 MeV medical cyclotron”, Phys. Medica 32(1):118 (2016).
19. Takashi Nakamura et al. “Neutron-production from thick targets of carbon, iron, copper, and lead by 30-MeV and 52-MeV protons”, Nucl Sci Eng 83: 444-458 (1983).
20. Ming-Jay Kuo et al. “Evaluation of neutron spectra in the SK cyclotron room under different operation parameters”, Radiat. Meas. 46 (2011).
21. Kazuyoshi Masumoto et.al “Effectiveness of self-shielding type cyclotrons”, Prog. Nucl. Sci. Technol. 4, 223-227 (2014).
22. Angelo Infantino et al. “Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements”, Med. Phys. 32, 1602 (2016).
23. Anne M. J. Paans and Johan R. “Quality in Nuclear Medicine”, Springer, 2017, Chapter 9 : The Decommissioning of Cyclotron Facilities for the Production of Radionuclides in Nuclear Medicine, ISBN 978-3-319-33529-2.
24. Angelo Infantino, et al. “Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: simulations against experimental measurements”, Nucl. Instr. Meth. Phys. Res. B, 336, 117 (2016).
25. R. Gallerani et al. “Neutron production in the operation of a 16.5 MeV PETrace cyclotron”, Prog. Nucl. Energy 50, 8, 939-943(2008).
26. T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis, “The FLUKA Code: Developments and challenges for high energy and medical applications”. Nuclear Data Sheets 120, 211–214 (2014).
27. A. Fontana, on behalf of the FLUKA collaboration, "Nuclear interaction model developments in FLUKA". INFN. Italy, 2017
28. FLUKA Online manual. Available at: http://www.fluka.org/fluka.php?id=man_onl&sub=_manual_intro (accessed Apr 15, 2021).
29. Pelliccioni et al.“overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the fluka code”, Radiat. Prot. Dosim.88, 4, 279-297 (2000)
30. F. H. Attix, “Introduction to Radiological Physics and Radiation Dosimetry”, John Wiley & Sons, Inc., 1986. ISBN 978-0-471-01 146-0.
31. H. A. Bethe, “Molière's Theory of Multiple Scattering” Phys. Rev. 89, 1256(1953)
32. IAEA Nuclear Data Services (online) Available at: https://www-nds.iaea.org/ (accessed Apr 15, 2021).
33. Alfredo Ferrari, “Fluka interaction models : a quick introduction”, OMA monte carlo school. Germany, 2017.
34. International atomic energy agency, “Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions”, IAEA-TECDOC-1211, Vienna, 2001.
35. McConn et al. “Compendium of Material Composition Data for Radiation Transport Modeling”, PNNL-15870 Revsion 1, Washington, 2011.
36. Douglas et al. “Applied statistics and probability for engineers”, 3th edition, 2002. ISBN 0-471-20454.
37. NIST Standard Reference Database (online). Available at: https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions (accessed Apr 15, 2021).
38. National council on radiation protection and measurements, “Radiation protection for particle accelerator facilities”. NCRP Report No. 144. Mayland, US, 2003.
39. Hagiwara et al. “Spectrum Measurement of Neutrons and Gamma-rays from Thick 2011_H218O Target Bombarded with 18 MeV Protons”, J. Korean Phys. Soc. 59, 2, 2035-2038 (2011).
40. S. G. Mashnik et al. “LAQGSM03.03 Upgrade and its Validation”. Fermilab, Batavia, US, 2007.
41. J.R. Lamarsh, A.J. Baratta, "Introduction to Nuclear Engineering," 3rd edition, Prentice Hall, 2001.ISBN 0-201-82498-1.
42. International Commission on Radiological Protection, “Conversion coefficients for use in radiological protection against external radiation”. ICRP Publication 74. Ann. ICRP 26 (3–4), 1996.