簡易檢索 / 詳目顯示

研究生: 吳東璋
tung-chang Wu
論文名稱: 釓取代型釔鐵柘榴石摻雜鈣與錫物理性質之研究
Study on Physics Characteristics of (Y3-xGdxCay)(Fe5-ySny)O12 YIG System
指導教授: 林志明
C.M. Lin
戴明鳳
M. F.Tai
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 釔鐵柘榴石
外文關鍵詞: Yttrium Iron Garnet
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以傳統固態反應法製備釓取代型釔鐵柘榴石((Y3-xGdx) Fe5O12 Garnet)為主成分,並添加鈣(Ca)與錫(Sn)粉末對材料進行一系列有系統的研發工作,並特別針對中科院擬研發的微波元件,尋找此系列材料的最佳化學計量、最佳製程條件,並探討該系列材料的最佳微波及磁性特性。
    實驗結果顯示:(1)、在XRD觀察鈣跟錫的添加,並無其他相的生成。晶格常數隨釓含量的增加而變大且鈣跟錫的添加也會使晶格常數變大(12.381Å~12.532 Å)。(2)、少量添加鈣跟錫(y=0.20與y=0.30)有助於密度的提高(5.84)與殘餘磁化強度Mrem的降低(0.18 emu/g),溫度穩定率方面以y=0.30最為穩定(<0.1%),比市售要來的好(0.13%)。(3)、各系列的介電常數與其市售商品在1GHz時所量測到的值取出觀察,發現介電常數(10~13)都很接近市售商品,介電損耗比市售商品要來的低(<3*10-2)。(4)、在電子自旋共振實驗中發現發現鈣跟錫的添加越多,共振線寬有變大之趨勢(568 ~ 917Oe),而隨釓含量的添加共振線寬有變小的趨勢(917 ~ 554Oe)。


    In this study, we reported the preparation and characterization of a series of Ca and Sn doped garnet materials prepare by traditional solid state reaction of gadolinium-substituted yttrium iron garnet ((Y3-xGdx)Fe5O12 Garnet)-basic. Ingredients. Especially for being developed microwave components from Chung-Shan Institute of Science
    and Technology, to find the best chemical stoichiometric ration ,process and measurement conditions, also discuss the best of materials, and magnetic properties of microwave. Result shows that:
    (1).The X-ray diffraction pattern reveals that all the samples appear as a
    single phase. Lattice constant increases with the increase of Gd content
    and also adding Ca and Sn make larger lattice constant.
    (2).Adding a small amount of Ca and Sn helps to improve the density and
    reduce Mrem. There is no significant change in the rate of temperature
    stability which approaches commercial products even some of
    proportion are better.
    (3).Observed in 1 GHz the measured value of commercial products and
    every proportion sample .The temperature stability ratio of y = 0.30 is
    most stable, better than commercial products.
    (4). In the electron spin resonating experiment discovered that the
    discovery calcium are more with the tin increase, the resonating line width has increasing tendency, But has along with the gadolinium content's increase resonating line width changes the small tendency.

    摘要………………………………………………………………………I Abstract ……………………………………………………..……….....II 致謝.....................................IV 圖目錄…………………………………………………………....…....VII 表目錄…………………………………………………………....…...XIV 第一章 緒論………………………………………………………..……1 1.1前言 ……………………………………………………………1 1.2 釔鐵柘榴石簡介............................1 1.3 研究背景與動機……………......………………………2 1.3.1 研究目標與規格..........................4 第二章 文獻回顧與基礎理論…………………………………..………7 2.1 鐵氧磁體特性……………………………………………….....7 2.1.1 鐵氧磁體的磁性起源………………………………..…..7 2.1.2 磁化曲線(Magnetization curve)...........8 2.2 材料電磁特性……………………………………………….....9 2.2.1 介電常數(Permittivity)…………………………….10 2.3 材料電磁特性量測方法……………………………………...11 2.4 鐵磁共振 (Ferromagnetic Resonance).................14 2-5 燒結原理..............................17 2.5.1 成核、再結晶與晶粒成長....................17 2.5.2 影響燒結因子................................17 2.5.3 燒結種類................................18 第三章 實驗步驟………………………………………………………21 3.1微波陶鐵磁材料樣品製備……………………………………21 3.2 特性分析………………………………………..…….………24 3.2.1 晶格結構分析…………………………………….…….24 3.2.2 密度量測…………………………………………..……25 3.2.3 微結構觀察(SEM)………………………………..…….25 3.2.3高頻介電常數測量………………………….…………..26 3.2.4磁性性質分析……………………………………………27 3.2.6電子自旋共振(Electron spin resonance, ESR)測量…28 第四章 結果與討論……………………………………………………29 4.1晶格結構分析…………………………………………………29 42磁性性質分析………………………………………………….33 4.3 高頻介電常數測量…………………………………….….….45 4.4 電子自旋共振測量………………………………….….…….51 第五章結論………………………………………………….…….……79 參考文獻…………………………………………………………….….81 發表之學術論文....................................................85

    [1] S. Geller,G. P. Espinosa,H. J. Williams,R.C. Sherwood and E. A.
    Nesbitt,” Rare Earth and Yttrium Free Ferrimagnetic Garnet with
    493K Curie Temperature ”,Appl. Phys. Letters,3, 60-61,(1963).
    [2] S. Geller,G. P. Espinosa, H. J. Williams,R.C. Sherwood and E. A.
    Nesbitt,” Ferrimagnetic Garnets Containing Pentavalent
    Vanadium ”,Appl. Phys.Letters,35, 570-572,(1964).
    [3] Deltronic Crystal Industries, INC.
    [4] 近角聰信,鐵磁性物理,ch 9 亞鐵磁氧化物的磁性,廣州大學出
    版社,p172,2002 年7 月第一版。
    [5] 胡朝彰,雷射加熱提拉法生長釔鐵柘榴石晶纖之研究,國立中
    央大學機械工程研究所博士論文,民國92 年。
    [6] N. P. Padture and G. Klemens, “ Low thermal conductivity in garnet
    ”, J.Am. Ceram. Soc. 1018-1020 (1997).
    [7] 唐敏注,”通訊用軟磁材料之特性及應用”,工業材料105 期,
    42-50(1995).
    [8] 陳文照,曾春風,遊信和。「材料科學工程」。高立圖書有限
    公司,p767-776,民國88年.
    [9] William E. Courtney, “Analysis and Evaluation of a Method of
    Measuring the Complex Permittivity and Permeability of Microwave
    Insulators,” IEEE Transactions on Microwave Theory and Technique.,
    vol. MTT-18, NO.8, (1970).
    [10] Denesk C. Dube, Rudolf Zurmuhlen, Andrew Bell, Nava Setter,
    “Dielectric Measurements on High-Q Ceramics in the Microwave
    Region,” J. Am. Ceram. Soc.,80, (1997).
    [11] Yoshio Kobayshi, Shuzo Tanaka, “Resonant Modes of a Dielectric
    Rod Resonator Short-Circuited at Both Ends by Parallel Conducting
    Plates,” IEEE Transactions on Microwave Theory and Technique,
    vol. MTT-28, NO.10, October, (1980).
    [12] Yoshio Kobayshi, Takayuki Aoki, Yukimasa Kabe, “Microwave
    Measurement Of Dielectric Properties of Low-Loss Materials by the
    Dielectric Rod Resonator Method,” IEEE Transactions on
    Microwave Theory and Technique, vol. MTT-33, NO.7, July, (1985).
    [13] Yoshio Kobayshi, Takayuki Aoki, Yukimasa Kabe, “Influence of
    Shields on the Q-Factors of a TE0 Dielectric Resonator,” IEEE
    Transactions on Microwave Theory and Technique, vol. MTT-33,
    NO.12, December, (1985)
    [14] 謝建國, “氧化鉍添加劑對鋇釹鈦高頻用介電陶瓷之影響, ” ,國立
    清華大學碩士論文, (2002).
    [15] Agilent Technologies, "Agilent Basics of Measuring the Dielectric
    properties of Materials, Agilent Literature Number 5989-2589EN,
    June ,26, (2006).
    [16]鄭智文”以共沉法製備摻雜鉍釔鐵柘榴石之微波性質研究”
    國東華大學材料科學與工程研究所,(2006).
    [17] L. Landau, E. Lifshitz, “On the theory of dispersion of magnetic
    permeability in ferromagnetic bodies”, Phys. Z. Sowjetunion 8
    ,153, (1935).
    [18] J.H.E. Griffiths, “Anomalous high-frequency resistance of
    ferromagnetic metals”, nature 158.,670, (1946).
    [19] J.L. Snoek, “ Gyromagnetic resonance in ferrites”, nature 160,90,
    (1947).
    [20] C. Kittel, “Interpretation of anomalous Larmor frequencies in
    ferromagnetic resonance experiment”, Phys. Rev.71, 270 (1947).
    [21] C. Kittel, “On the theory of ferromagnetic resonance absorption”,
    Phys. Rev. 73, 155(1948).
    [22] Gerhard Winkler, “Magnetic garnet”, 1981.
    [23] J.F. Dillon, “ Ferrimagnetic resonance in yttrium iron garnet”, Phys.
    Rev. 105, 759 (1957).
    [24] R.C. LeCraw, E.G. Spencer, C.S. Porter, “Ferromagnetic resonance
    linewidth in yttrium iron garnet single crystals”, Phys. Rev. 110,
    1311 (1958).
    [25] Keith J. Laidler, John H. Meiser, “Physical chemistry second
    edition”,Houghton Mifflin,643~644, (1995).
    [26] Robert M. Silverstein, Francis X. Webster, “Spectrometric
    Identification of Organic Compounds”, Sixth edition, (1997).
    [27] S. Yangyun, R. J. Brook, “Preparation of zirconia toughened
    ceramics by reaction sintering,” Sci. Sintering, 35-37,(1985).
    [28] W.J. Huppmann, G. Ptzow, Sintering Process, Plenum Prss,
    189-200, (1979).
    [29] H.Y. Lu, in Physical Ceramics, (1995).
    [30] M. Randall, German, Sintering Theory and Practice, John
    Wily and Sons, New York, (1996).
    [31] H.S. Canon, F.V. Lenel, in “Edited by F. Benesovsky Metallwerk
    Plansee,”Reutte,118, 106, (1953).
    [32] T. Inui and N. Ogasawara, “Grain Size Effects on Microwave
    Ferrite Magnetic Properties ”J. Appl. Phys.,49,2019,(1978)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE