簡易檢索 / 詳目顯示

研究生: 陳俊龍
Chen,Chun-Lung
論文名稱: 建構類神經網路應用於未施打顯影劑電腦斷層進行主動脈剝離之輔助偵測
Constructing artificial neural network for predicting aortic dissection by using non-enhanced CT images
指導教授: 莊克士
Chuang, Keh-Shih
林信宏
Lin, Hsin-Hon
口試委員: 許靖涵
Hsu, Ching-Han
陸正昌
Lu, Cheng-Chang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 主動脈剝離電腦斷層血管攝影深度學習顯影劑卷積神經網路
外文關鍵詞: Aortic dissection, Computed tomography angiography, Deep learning, Contrast agent, Convolutional neural network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動脈剝離是致死率很高的一個疾病,因此立即的診斷、發現、與治療相當的重要。主動脈剝離的診斷主要是透過電腦斷層血管攝影(CT Angiograph, CTA)檢查,掃描流程共需二組(有/無施打顯影劑)影像,藉由兩者的差異,可確定有無剝離的病兆。然而由於電腦斷層血管攝影必須施打顯影劑並且二次CT掃描會有過多輻射劑量的風險。因此本研究希望結合深度學習技術直接透過未施打顯影劑的影像便能有效地預測有無主動脈剝離的徵兆。這項研究回溯式的收集南部某醫學中心,從2012年9月到2019年12月,接受主動脈CTA檢查的患者,共 1296人次。我們總共納入778位病人(包含有和無主動脈剝離的受檢者),隨機分為訓練組、驗證組以及測試組三個資料集。並且建構了一個用於預測主動脈剝離的卷積神經網路。研究結果顯示在訓練組與驗證組中,卷積神經網路預測的準確率分別為0.977與0.925,損失率則分別為0.167與0.264。在測試組上,卷積神經網路預測的靈敏度為0.97,特異度0.90。並且在接收者操作特徵曲線分析中,曲線下面積可高達0.971。綜上所述,本研究的結果初步顯示應用卷積神經網路在無需施打顯影劑的CT影像上能夠準確地預測出主動脈剝離。未來我們將進一步將評估此項技術並且與臨床醫師的診斷進行更深入的比較。


    Aortic dissection is a disease with a high fatality rate. Therefore, immediate diagnosis, detection, and treatment is crucial. Computer Tomography Angiograph (CTA) is the investigation of choice for aortic dissection. Entire scan processes of CAT require two sets of images (with/without contrast media). Based on the difference between the two images, one can determine whether there is a sign of dissection. However, CT angiography must be administered with contrast agent and there is a risk of excessive radiation dose due to the requirement of dual CT scans. Therefore, the study aims to effectively predict the aortic dissection merely from the non-contrast CT images via deep learning. This study retrospectively collected 1,296 patients who underwent aortic CTA examinations from a medical center in the south Taiwan from September 2012 to December 2019. We included a total of 778 patients (including subjects with and without aortic dissection diagnosed), which were randomly divided into three data sets: training group, validation group, and test group. A convolutional neural network (CNN) for predicting aortic dissection was then established. Results showed that the accuracy of CNN-prediction was 0.977 for the training group and 0.925 for the validation group, while the loss rate was 0.167 and 0.264, respectively. For the testing group, a sensitivity of 0.97 and a specificity of 0.90 can be achieved using CNN method. The area under the ROC curve be as high as 0.971. In summary, the preliminary results show the promise for predicting aortic dissection on non-contrast CT images using convolutional neural networks. We will further evaluate this technology and make an in-depth comparison with the diagnosis of clinicians in the future.

    中文摘要 i Abstract ii 致謝 iii 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 背景介紹與文獻回顧 6 2.1 電腦斷層掃描 6 2.1.1 電腦斷層血管攝影術 9 2.1.2 顯影劑 9 2.2 主動脈介紹 12 2.3 何謂主動脈剝離 14 2.3.1 臨床表徵(sign)與分型(types) 15 2.3.2 主動脈剝離死亡率統計 16 2.3.3 臨床診斷方式 17 2.4 人工智慧神經網路簡介 18 2.4.1 神經傳導原理 18 2.4.2 類神經網路(Artificial Neural Networks, ANN) 20 2.4.3 機器學習(machine learning, ML) 24 2.4.4 深度學習(Deep learning) 25 2.5 深度學習目前在主動脈剝離上的進展 28 第三章 材料與方法 30 3.1 影像資料的收集 30 3.2 實驗組別的建立 30 3.3 程式環境 32 3.4 卷積神經網路(convolutional neural network, CNN) 33 3.4.1 卷積層(convolutional layer) 34 3.4.2 池化層(pooling layer) 35 3.4.3 平坦層(flatten layer) 37 3.4.4 隱藏層(hidden layer) 37 3.4.5 輸出層(output layer) 38 3.5 架構模型網路層(model architecture) 39 3.6 模型評估標準 41 第四章 結果 42 4.1 訓練過程之損失函數曲線 42 4.2 模型評估 43 4.2.1 測試組 43 4.2.2 混淆矩陣 44 4.2.3 ROC (receiver operating characteristic ) 分析 45 4.2.4 AUC和Youden 指標 46 第五章 討論 49 5.1 模型設計與參數選擇 49 5.1.1 輸入影像維度 51 5.1.2 卷積層 51 5.1.3 Filter 52 5.1.4 Batch 53 5.1.5 Learning rate 53 5.1.6 Dropout 54 5.1.7 Callbacks & Epochs 55 5.1.8 再現性評估 56 5.2 電腦視覺(computer vision) 56 5.2.1 Grad-CAM 57 5.2.2 視覺化模型網路辨識過程 58 5.3 臨床輔助診斷的角色 66 第六章 結論與未來 68 參考文獻 69 附錄 71

    A. Hata, M. Yanagawa, K. Yamagata, Y. Suzuki, S. Kido, A. Kawata, et
    al. 2021 Deep learning algorithm for detection of aortic
    dissection on non-contrast-enhanced CT European Radiology Vol. 31
    Issue 2 Pages 1151-1159
    Bae K T 2010 Intravenous contrast medium administration and scan
    timing at CT: considerations and approaches Radiology 256 32-61
    Beckett K R, Moriarity A K and Langer J M 2015 Safe use of contrast
    media: what the radiologist needs to know Radiographics 35 1738-50
    Chartrand G, Cheng P M, Vorontsov E, Drozdzal M, Turcotte S, Pal C J,
    Kadoury S and Tang A 2017 Deep learning: a primer for radiologists Radiographics 37 2113-31
    Dehghan E, Wang H and Syeda-Mahmood T 2017 IEEE 14th
    International Symposium on Biomedical Imaging (ISBI 2017),2017), vol. Series): IEEE) pp 557-60
    Huo D, Kou B, Zhou Z and Lv M 2019 A machine learning model to
    classify aortic dissection patients in the early diagnosis phase Scientific reports 9 1-8
    Ketkar N and Santana E 2017 Deep learning with python vol 1: Springer)
    pp 72
    Krizhevsky A, Sutskever I and Hinton G E 2017 ImageNet classification
    with deep convolutional neural networks Communications of the
    ACM 60 84-90
    Lecturio 2021 Computed Tomography(CT)|Concise Medical Knowledge
    https://www.lecturio.com/concepts/computed-tomography-ct/
    Liu L, Zhang C, Zhang G, Gao Y, Luo J, Zhang W, Li Y and Mu Y 2020
    A study of aortic dissection screening method based on multiple
    machine learning models Journal of thoracic disease 12 605
    Lu L, Zheng Y, Carneiro G and Yang L 2017 Deep learning and
    convolutional neural networks for medical image computing
    Advances in Computer Vision and Pattern Recognition 10 978 -3
    pp 48
    Lu J-T, Brooks R, Hahn S, Chen J, Buch V, Kotecha G, Andriole K P,
    Ghoshhajra B, Pinto J and Vozila P International Conference on
    Medical Image Computing and Computer-Assisted
    Intervention,2019), vol. Series): Springer) pp 723-31
    Manaswi N K, Manaswi N K and John S 2018 Deep learning with
    applications using python: Springer) pp 95
    McMahon M A and Squirrell C A 2010 Multidetector CT of aortic
    dissection: a pictorial review Radiographics 30 445-60
    Norris D J 2017 Beginning artificial intelligence with the Raspberry Pi:
    Springer) pp 42,213
    Pattanayak S, Pattanayak and John S 2017 Pro deep learning with
    tensorflow: Springer) pp 90,102,106.
    Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D and Batra D
    Proceedings of the IEEE international conference on computer
    vision,2017), vol. Series) pp 618-26
    Swamynathan M 2017 Mastering machine learning with python in six
    steps: A practical implementation guide to predictive data analytics
    using python: Apress) pp 65
    Tan Y 2020 Automatic Detection of Aortic Dissection Based on
    Morphology and Deep Learning Computers, Materials & Continua
    62 1201-15
    Thomsen H S 2014 Management of Acute Adverse Reactions to
    Contrast Media: Springer) pp 63-9
    Trentin C, Faggiano E, Conti M and Auricchio F 2015 9th International
    Symposium on Image and Signal Processing and Analysis (ISPA),2015), vol. Series): IEEE) pp 2,6,8.9

    QR CODE