簡易檢索 / 詳目顯示

研究生: 吳宗龍
Wu, Zung-Lung
論文名稱: 電化學法多巴胺定量感測之氮參雜超奈米微晶鑽石電極與CMOS感測電路
An Electrochemical Dopamine Sensor by N-doped UNCD Electrode with CMOS Detection Circuit
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 劉承賢
邱一
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 143
中文關鍵詞: 超奈米微晶鑽石多巴胺帕金森氏症阿茲海默症電化學氧化還原反應交叉電極感測器CMOS 感測電路微機電技術
外文關鍵詞: UNCD, Dopamine, Parkinson's Disease, Alzheimer's Disease, Electrochemical Oxidation Reduction Reaction, IDA Electrodes, CMOS, MEMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的在於如何利用超奈米微晶鑽石(ultrananocrystalline diamond film,UNCD)製作出一高感測度並同時俱備即時監測、定量以及成本低廉之多巴胺生醫感測晶片。醫學上普遍咸信建立一個即時監測人體多巴胺濃度的硬體平台將有助於了解帕金森氏症(Parkinson's Disease)與阿茲海默症(Alzheimer's Disease)患者於接受治療後體內多巴胺改變的情況;有鑑於目前醫院所採用之高壓液相層析法(High Pressure Liquid Chromatography, HPLC)無法達到即時監測且儀器成本昂貴,因此本感測晶片採用電化學氧化還原法(Oxidation Reduction)來感測多巴胺。
    論文中可以分成氮參雜超奈米微晶鑽石交叉電極(Interdigitated Array Electrodes, IDA Electrodes)感測器與互補式金屬氧化半導體(Complementary Metal Oxide Semiconductor, CMOS)感測電路兩個部份,我們使用微機電技術(Micro-Electro-Mechanical Systems, MEMS)將感測器製作於表面含氮化矽(Silicon Nitride)之矽晶片上,多巴胺可藉由此晶片因電化學氧化還原反應(Electrochemical Oxidation Reduction Reaction)產生訊號電流,再將此訊號電流經過互補式金屬氧化半導體感測電路,對電容充電轉換成電壓訊號;由於在不同濃度之多巴胺經由氧化還原反應產生不同之電流訊號,因此在相同的充電時間下,我們可以藉由互補式金屬氧化半導體感測電路所轉換出不同的電壓訊號來讀出所感測之電流訊號,最終換算出多巴胺濃度。
    超奈米微晶鑽石因具有表面平坦及優越的物理和化學特性,適合應用於微機電元件中,但由於其導電度接近絕緣體,因此在應用方面有所侷限。藉由一些元素適度的摻雜,以提升其導電度,有助於鑽石膜在半導體與生醫元件上的應用。


    In this study, high sensitivity UNCD (ultrananocrystalline diamond) micrielectrodes for real-time dopamine detection are investigated. It is believed that such a device could be used in the future for monitoring the change of dopamine concentration in Parkinson's disease and Alzheimer's Disease patients. High Pressure Liquid Chromatography (HPLC) has been widely used in hospitals due to its high sensitivity; however the expensive cost makes it inconvenient for general users. In order to improve this problem, a new dopamine sensor based on electrochemical detection is proposed. The dopamine sensor in this thesis includes N-doped UNCD interdigitated microelectrodes and CMOS (Complementary Metal Oxide Semiconductor) sensing circuit. First of all, by employing MEMS (Micro-Electro-Mechanical Systems) technology the sensor is fabricated on the silicon substrate coated with Si3N4. As the dopamine is detected by microelectrode, the sensor generates a current signal resulted from oxidation and reduction. Then, this current signal is converted to a voltage signal by the sensing circuit. Finally, the dopamine concentration can be calculated from the output data. Since the UNCD has flat surface, superior physical and chemical properties, it’s an excellent candidate material for microelectromechanical (MEMS) application. Its conductivity is close to that of an the insulator, so it has limited applications. By doping some elements to improve its conductivity, it can help the UNCD on the semiconductor and biomedical device applications.

    第一章 緒論 1 1-1 研究動機 1 1-2 微機電技術簡介 5 1-3 參考文獻回顧 9 第二章 感測器感測原理、材料與設計 15 2-1 感測器感測原理 15 2-1-1 電化學氧化還原反應與感測概論 15 2-1-2 電化學循環伏安法(Cyclic Voltammetry) 21 2-1-3 電極與電解液接面 24 2-2 感測器材料 27 2-2-1 鑽石薄膜簡介 27 2-2-2 化學氣相沉積鑽石薄膜 29 2-2-3 氮參雜超奈米微晶鑽石薄膜 33 2-2-4 氮摻雜超奈米微晶鑽石膜的應用 37 2-3 感測器之分析、設計與製作 40 2-3-1 感測器之分析、設計 40 2-3-2 感測器之製作 45 第三章 沉積氮摻雜超奈米微晶鑽石膜 52 3-1 沉積氮摻雜超奈米微晶鑽石膜 52 3-1-1 孕核階段-超音波震盪法 52 3-1-2 沉積氮摻雜超奈米微晶鑽石膜 53 3-1-3 探討改變通入氮氣的百分比對摻雜氮UNCD的影響 54 3-2 探討電漿處理後的鑽石膜表面 60 3-3 比較不同碳基材電極的電化學特性 64 3-4 材料特性分析工具 69 第四章 感測電路設計與原理 76 4-1 感測電路架構設計以及分析 76 4-2 感測電路穩定度分析 79 4-3 感測電路操作原理與分析 85 4-4 輸出緩衝器設計與分析 92 4-5 感測電路模擬 97 第五章 量測結果 101 5-1 感測器晶片量測結果 101 5-2 感測電路晶片量測結果 115 5-3 感測器晶片與感測電路晶片整合之量測結果 120 第六章 結論 123 6-1 建議與未來工作 124 參考文獻 125

    [1] The Nobel Prize in Physiology or Medicine 2000. http://nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
    [2] S. D. Iversen and L. L. Iversen, “Dopamine: 50 years in perspective,” Trends in Neurosciences, vol. 30, pp. 188-193, May 2007.
    [3] http://life.nthu.edu.tw/~g864264/Neuroscience/Disorder/parkinson.htm #ther
    [4] J. M. Bustillo and R.S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE, vol. 86, pp. 1552-1574, 1998.
    [5] O. Brand, "Microsensor integration into systems-on-chip," Proceedings of the IEEE, vol. 94, pp. 1160-1176, Jun 2006.
    [6] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, Dec. 10-13, pp. 609-612, 1995.
    [7] LH Zhang, N Teshima, T Hasebe, M Kurihara, T Kawashima., “Flow-injection determination of trace amounts of dopamine by chemiluminescence detection,” Talanta vol. 50, pp. 677-683, 1999.
    [8] I. C. Vieira and O. Fatibello-Filho, “Pectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source,” Talanta, vol. 46, pp. 559-564, 1998.
    [9] P. Nagaraja, R. A. Vasantha and K. R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations,” Talanta, vol. 55, pp. 1039-1046, 2001.
    [10] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, and B. Madea, “Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry,” Forensic Sci. Int., 113, pp. 359-366, 2000.
    [11] T. J. Panholzer, J. Beyer, and K. Lictwald, “Coupled-column liquidchromatographic analysis of catecholamines, serotonin, and metabolites inhuman urine,” Clin Chem, 45, pp. 262, 1999.
    [12] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, and L. Masotti,“Determination of catecholamines in human plasma by high-performanceliquid chromatography with electrochemical detection,” J. Chromatogr.Vol. 730, pp. 201-211, , 1999
    [13] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D. O’Hare, “Simpleand rapid determination of serotonin and catecholamines in biological tissueusing high-performance liquid chromatography with electrochemicaldetection,” J. Chromatogr. B, 818, pp. 269-276, 2005.
    [14] R. L. Aponte, J. A. Diaz, A. A. Pereira, and V. G. Diaz, “Simple thin layerchromatography method with fiber Optic remote sensor for fluorimetricquantification of tryptophan and related metabolites,” J. Liq Chromatogr.Relat. Technol.vol. 19, pp. 687-698, 1996.
    [15] A. Liu, I. Honma, and H. Zhou, “Electrochemical biosensor based onprotein–polysaccharide hybrid for selective detection of nanomolar dopaminemetabolite of 3, 4-dihydroxyphenylacetic acid (DOPAC),” Electrochem.Commun., 7, pp. 233-236, 2005.
    [16] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis ofdopamine and ascorbic acid using poly (N, N-dimethylaniline) - modifiedelectrodes,” Bioelectrochem. , 59, pp. 11-19, 2003.
    [17] M. Sotomayor, A. A. Tanaka, L. T. Kubota, “Development of an amperometricsensor highly selective for dopamine and analogous compounds determinationusing bis (2, 2 -Bipyridil) copper (II) chloride complex,”Electroanalysis, 15, pp.787-796, 2003.
    [18] T. J. Castilho, M. Sotomayor, and L. T. Kubota, “Amperometric biosensorbased on horseradish peroxidase for biogenic amine determinations inbiological samples,”J. Pharm Biomed Anal, vol. 37, pp. 785-791, 2005.
    [19] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, and H. Kaneko, “Simultaneous voltammetric measurement of nitrite ion, dopamine, serotoninwith ascorbic acid on the GRC electrode,”Electrochim Acta, vol. 44, pp. 3809-3820, 1999.
    [20] J. M. Zen and P. J. Chen, “An ultrasensitive voltammetric method for dopamineand catechol detection using clay-modified electrodes,” Electroanalysis, vol. 10, pp.12-15, 1998.
    [21] J. M. Zen, W. M. Wang, and G. Ilangovan, “Adsorptive potentiometric strippinganalysis of dopamine on clay-modified electrode,”Anal Chim Acta, vol. 372, pp.315-321, 1998.
    [22] L. Gorton, E. Domı́nguez, “Electrocatalytic oxidation of NAD(P)H atmediator-modified electrodes,”Reviews in Molecular Biotechnology, vol.82, pp.371-392, 2002.
    [23] M. Wei, M. Li, N. Li, Z. Gu,and X. Duan, “Electrocatalytic oxidation ofnorepinephrine at a reduced c60-[dimethyl-(β-cyclodextrin)]2 and nafionchemically modified electrode,”Electrochim Acta ,vol.47, pp. 2673-2678, 2002.
    [24] J. Wang, M. Li, Z. Shi, N. Li and Z. Gu, “Electrocatalytic oxidation ofnorepinephrine at a glassy carbon electrode modified with single wall carbonnanotubes,”Electroanalysis, vol. 14, pp. 225-230, 2002.
    [25] M. D. Rubianes and G. A. Rivas, “Highly selective dopamine quantificationusing a glassy carbon electrode modified with a melanin-type polymer,”AnalChim Acta, vol. 440, pp. 99-108, 2001.
    [26] J. Wang and A. Walcarius, “Zeolite-modified carbon paste electrode forselective monitoring of dopamine,”J. Electroanal. Chem. vol. 407, pp. 183-187, 1996.
    [27] Y. F. Tu and H. Y. Chen, “A nano-molar sensitive disposable biosensor fordetermination of dopamine,”Biosens. Bioelectron. vol. 17, pp. 19-24, 2002.
    [28] J. W. Mo and B. Ogorevc, “Simultaneous measurement of dopamine andascorbate at their physiological levels using voltammetric microprobe based onoveroxidized poly (1,2-phenylenediamine)-coated carbon fiber,”Anal. Chem.vol. 73, pp. 1196-1202, 2001.
    [29] S. M. Chen and K. C. Lin, “The electrocatalytic properties of biologicalmolecules using polymerized luminol film-modified electrodes,”J. Electroanal.Chem. vol. 523, pp. 93-105, 2002.
    [30] M Chicharro, A Sanchez, A Zapardiel; et al., “Capillaryelectrophoresis of neurotransmitters with amperometric detection atmelanin-type polymer-modified carbon electrodes,”Anal. Chim. Acta , vol.523, pp.185-191, 2004.
    [31] R. Aguilar, M. M. Davila, M.P. Elizalde, J. Mattusch and R. Wennrich, “Capability of a carbon–polyvinylchloride composite electrode for thedetection of dopamine, ascorbic acid and uric acid,”Electrochim. Acta , vol. 49, pp.851-859, 2004.
    [32] S. M. Chen and K. T. Peng, “The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt (II) hexacyanoferrate films,”J. Electroanal. Chem. vol. 547, pp. 179-189, 2003.
    [33] F. Lisdat, U. Wollenberger, A. Makower, H. Hortnagl, D. Pfeiffer, and F. W.Scheller, “Catecholamine detection using enzymatic amplification,”Biosens.Bioelectron. vol. 12, pp. 1199-1211, 1997.
    [34] Cheng, F.-C., Kuo, J.-S., “High-performance liquid chromatographicanalysis with electrochemical detection of biogenic amines using microborecolumns,”J. Chromatogr. B, vol. 665, pp. 1-13, 1995.
    [35] R. Kurita, H. Tabei, Z. Liu, T. Horiuchi, and O. Niwa, “Fabri-cation andelectrochemical properties of an interdigitated array electrode in amicrofabricated wall-jet cell,”Sens. Actuators B, Chem., vol. B71, no. 1\-2, pp.82-89, 2000.
    [36] S. Raina, W. P. Kang, J. L. Davidson, “ Nanodiamond macro- and microelectrode array bio-sensor ” 2009 IEEE SENSORS, Vol.1-3, pp. 1702-1705, 2009
    [37] Roham Masoud, M. Halpern Jeffrey, B. Martin Heidi, et al., "Wireless amperometric neurochemical monitoring using an integrated telemetry circuit," IEEE Transactions on Biomedical Engineering, vol. 55, pp. 2628-2634, Nov 2008.
    [38] R Masoud, P. D. David, S. R. Eric, et al., "A wireless ic for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry," IEEE Transactions on Biomedical Circuits and Systems, vol. 2, pp. 3-9, Mar 2008.
    [39] R Masoud, P. C. Daniel, P. D. David, et al., "A wireless ic for time-share chemical and electrical neural recording," IEEE Journal of Solid-State Circuits, vol. 44, pp. 3645-3658, Dec 2009.
    [40] M. Pohanka and P. Skladai, "Electrochemical biosensors - principles and applications," Journal of Applied Biomedicine, vol. 6, pp. 57-64, 2008.
    [41] G. Dorothee, M. Robert, V. Janos, et al., "Electrochemical biosensors - Sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, Mar 2008.
    [42] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-&, 1963.
    [43] 詹豐林 “使用電化學法配合互補式金屬氧化半導體電路之多巴胺定量感測器”, 國立清華大學電子研究所, 民97
    [44] D. A. Skoog, , F. J. Holler , T. A. Nieman, “Principles of instrumental analysis,”5th ed; Harcourt Brace College: USA, 1998.
    [45] D. A. Skoog, et al., “Principles of instrumental analysis,” 6th ed. Belmont, CA: Thomson Brooks/Cole, 2007.
    [46] H. Suzuki, T. Hirakawa, S. Sakaki, and I. Karube, “An integratedthree - electrode system with a micromachined liquid-junction Ag/AgCl reference electrode,”Anal. Chim. Acta, vol. 387, pp. 103-112, 1999.
    [47] S.I. Park, S.B. Jun, S. Park, H.C. Kim and S.J. Kim, “Application of a newCl-plasma-treated Ag/AgCl reference electrode to micromachined glucosesensor,”IEEE Sens. J. , vol. 3, pp. 267-273, 2003.
    [48] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics,”Sensorsand Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
    [49] A. J. Bard and L. R. Faulkner,” Electrochemical methods: fundamentalsand applications,” 2nd ed. New York: Wiley, 2001.
    [50] D. M. Gruen, “Nanocrystalline diamond films,” Annu. Rev. Mater. Sci., vol. 29, 1999.
    [51] R. F. Davis, “Diamond films and coatings: development, properties, and applications,” Noyes Publications, 1993.
    [52] H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: nucleation and early growth stages,” Noyes Publications, 1993.
    [53] B. Dischler and C. Wild, “Low pressure sythetic diamond: manufacturing and applicaitons “ Springer, 1998.
    [54] E. I. Erlich and W. Dan Hausel, “Diamond deposits,” Society for Mining, Metallurgy, and Exploration, 2002.
    [55] P. W. May, “CVD diamond: a new technology for the future?,” Endeavour, vol. 19, pp. 101-106, 1995.
    [56] P. W. Bridgman, “Synthetic diamonds,” Scientific American, vol. 193, 1955.
    [57] W. G. Eversole, U.S. Patent No. 3,030,188, 1962.
    [58] ANGUS JC, WILL HA, STANKO WS, “Growth of diamond seed crystals by vapor deposition,” Applied Physics Letters, vol. 39, p. 4, 1968.
    [59] F Cleri, P Keblinski, L Colombo, et al., “On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond,“ Europhysics Letters, vol. 46, 1999.
    [60] AR Krauss, O Auciello, DM Gruen, et al., “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices,” Diamond and Related Materials, vol. 10, pp. 1952-1961, 2001.
    [61] MW Geis, JC Twichell, NN Efremow, et al., “Comparison of electric field emission from nitrogen‐doped, type Ib diamond, and boron‐doped diamond,” Applied Physics Letters, vol. 68, pp. 2294-2296, 1996.
    [62] MA Brewer, Brownig, PJ Evans, et al., “Diamond film growth on Ti‐implanted glassy carbon,” Applied Physics Letters, vol. 63, p. 3, 1993.
    [63] S YUGO, T KANAI, T KIMURA, et al., “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Applied Physics Letters, vol. 58, p. 3, 1991.
    [64] X Xiao, J Birrell, JE Gerbi, et al., “Low temperature growth of ultrananocrystalline diamond,” Applied Physics Letters, vol. 96, p. 8, 2004.
    [65] CJ Rennick, AG Smith, JA Smith; et al., “Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition,” Diamond and Related Materials, vol. 13, pp. 561-568.
    [66] DM Gruen, SZ Liu, AR Krauss, et al., “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions,” Applied Physics Letters, vol. 89, 2001.
    [67] DM Gruen, SZ Liu, AR Krauss, et al., “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions,” Applied Physics Letters, vol. 64, pp. 1502-1504, 1994.
    [68] TG McCauley, DM Gruen, AR Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma,” Applied Physics Letters,vol. 73, pp. 1646-1648, 1998.
    [69] D. M. Gruen, “Namocrystalline diamond films,” Annu. Rev. Mater. Sci., vol. 29, 1999.
    [70] LC Qin, D Zhou, AR Krauss, et al., “Tem characterization of nanodiamond thin films,” Nanostructured Materials, vol. 10, pp. 649-660, 1998.
    [71] D Zhou, DM Gruen, LC Qin, et al., “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas,” Applied Physics Letters, vol. 84, pp. 1981-1989, 1998.
    [72] TG McCauley, DM Gruen, AR Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma,” Applied Physics Letters, vol. 73, pp. 1646-1648, 1998.
    [73] JR Rabeau, P John, JIB Wilson, et al., “The role of C2 in nanocrystalline diamond growth,” Applied Physics Letters, vol. 96, p. 6724, 2004.
    [74] N. Dubrovinskaia, Leonid Dubrovinsky, Falko Langenhorst, Steven Jacobsen, Christian Liebske, “Nanocrystalline diamond synthesized from C60,” Diamond and Related Materials, vol. 14, pp. 16-22, 2005.
    [75] SR Sails, DJ Gardiner, M Bowden, et al., “Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm,” Diamond and Related Materials, vol. 5, p. 589, 1996.
    [76] RJ NEMANICH, JT GLASS, G LUCOVSKY, et al., “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” Physical Review B, vol. 63, 1988.
    [77] A. C. Ferrari and J. Robertson, “Origin of the 115-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B, vol. 63, p. 121405, 2001.
    [78] A Erdemir, C Bindal, GR Fenske, et al., “Friction and wear properties of smooth diamond films grown in fullerene + argon plasmas “ Diamond and Related Materials, vol. 5, p. 923, 1996.
    [79] AV Sumant, DS Grierson, JE Gerbi, et al., “Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond,” Advanced Materials, vol. 17, p. 1039, 2005.
    [80] QY Chen, DM Gruen, AR Krauss, et al., “The structure and electrochemical behavior of nitrogen - containing nanocrystalline diamond films deposited from ch[sub 4]/n[sub 2]/ar mixtures,” Journal of The Electrochemical Society, vol. 148, pp. E44-E51, 2001.
    [81] AR Krauss, O Auciello, MQ Ding; et al., “Electron field emission for ultrananocrystalline diamond films,” Applied Physics Letters, vol. 89, p. 2958, 2001.
    [82] PK Sitch, G Jungnickel, M Kaukonen, et al., “A study of substitutional nitrogen impurities in chemical vapor deposited diamond,” Applied Physics Letters, vol. 83, p. 4642, 1998.
    [83] V Baranauskas, BB Li, A Peterlevitz, et al., “Nitrogen-doped diamond films,” Applied Physics Letters, vol. 85, p. 7455, 1999.
    [84] J Birrell, JA Carlisle, O Auciello, et al., “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond,” Applied Physics Letters, vol. 81, 2002.
    [85] S Bhattacharyya, O Auciello, J Birrell, et al., “Synthesis and characterization of highly - conducting nitrogen-doped ultrananocrystalline diamond films,” Applied Physics Letters, vol. 79, p. 1441-1443, 2001.
    [86] P Zapol, M Sternberg, LA Curtiss, et al., “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries,” Physical Review B, vol. 65, p. 045403, 2001.
    [87] J. K. Luo, Y. Q Fu., H. R. Le, et al., “Diamond and diamond-like carbon MEMS “ Journal of Micromechanicals and microengineering, vol. 17, p. S147-S163, 2007.
    [88] B Bi, WS Huang; J Asmussen, et al., “Surface acoustic waves on nanocrystalline diamond,” Diamond and Related Materials, vol. 11, pp. 677-680, 2002.
    [89] F Benedic, MB Assouar, F Mohasseb, et al., “Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride,” Diamond and Related Materials, vol. 13, pp. 347-353, 2004.
    [90] S Bensmaine., L. Le Brizoual, O. Elmazria, et al., “SAW devices based on ZnO inclined c-axis on diamond,” Diamond and Related Materials, vol. 17, pp. 1420-1423.
    [91] Y. C. Lee, S. J. Lin, V Buck., et al., “Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique,” Diamond and Related Materials, vol. 17, pp. 446-450.
    [92] DM Gruen, AR Krauss, CD Zuiker, et al., “Characterization of nanocrystalline diamond films by core‐level photoabsorption,” Applied Physics Letters, vol. 68, pp.1640-1642, 1996.
    [93] S Jiao, A Sumant, MA Kirk, et al., “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2,” Applied Physics Letters, vol. 90, p. 5, 2001.
    [94] R. Thewes, F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler, G. Eckstein, C. Kassel, M. Stanzel, R. Hintsche, E. Nebling, J. Albers, J. Hassman, J. Schulein, W. Goemann, and W. Gumbrecht,, “Sensor arrays for fully electronic DNA detection on CMOS,” ISSCC, Digest of Tech. Papers, pp. 350-351, 2002.
    [95] F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer, D.D.J. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, K. Plehnert, G. Eckstein and R. Thewes, “Fully electronic DNA detection on aCMOS chip: device and process issues.” Tech. Dig., Int. Electron DevicesMeet., pp. 488-491, 2002.
    [96] M. Paeschke, U. Wollenberger, T. Lisec, U. Schnakenberg, and R. Hintsche, “Highly sensitive electrochemical microsensors using submicrometer electrodearrays,”Sens. Actuators, vol. 27, pp. 394-397, 1995.
    [97] K. Aoki, M. Morita, O. Niwa, H. Tabei, “Quantitative analysis of reversiblediffusion-controlled currents of redox soluble species at interdigitated arrayelectrodes under steady-state conditions,”J. Electroanal. Chem. vol. 256,PP. 269-282, 1988.
    [98] K Hayashi, S Yamanaka, H Watanabe, et al., “Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond fil,” J. Appl. Phys. , vol. 81, p. 7078, 1997.
    [99] G. M. Jenkins and K. Kawamura, “Structure of glassy carbon,” nature, vol. 231, pp. 175-176, 1971.
    [100] 汪建民 主編, 材料分析: 材料科學叢書 2, 1998.
    [101] S. M. SZE, “Semiconductor devices physics and technology,” JOHN WILEY & SONS, INC., 2002.
    [102] A. J. Bard and L. R. Faulkner,” Electrochemical Methods Fundamentals and applications,” JOHN WILEY & SONS, 1980.
    [103] A. Masood, M. Aslam, M.A. Tamor, T.J. Potter, J. Electrochem. Soc.138 L67, 1991.
    [104] S. Katsumata, Y. Oobuchi, T. Asano, Diam. Relat. Mater. , vol.3, pp.1994.
    [105] XD Wang, GD Hong, J Zhang, et al., “Precise patterning of diamond films for MEMS application”, Journal of Materials Processing Technology, Vol. 11, PP. 677-680, 2002.
    [106] H Yoshikawa, S Shikata, N Fujimori, et al., “Smooth surface dry etching of diamond by very high frequency inductively coupled plasma”, New Diam Front Carbon Technol, vol. 16, no. 2, pp. 97-106, 2006.
    [107] Y. Tang and D. M. Aslam, “Technology of polycrystalline diamond thin films for microsystems applications”, Journal of Vacuum Science and Technology B (JVSTB), vol. B23(3), June 2005.
    [108] M. Edo, Y. Watnabe, E. Yonezawa, “ Proceedings of the international symposium on microsystems, intelligent material and robotics”, Sendai, Japan, 1996, p. 177.
    [109] V.G. Ralchenko, K.G. Korotushenko, A.A. Smolin, E.N. Loubnin, Diam. Relat. Mater., vol. 4, pp.893. ,1995.
    [110] M. J. Jubber, A. J. McLaughlin, J.H. Marsh,et al., “Micromachined pattern transfer into CVD diamond”, Diamond and Related Mateerials ,vol. 7, pp.1148 , 1998.
    [111] P. R. Gray, “Analysis and design of analog integrated circuits,” 4th ed. New York: Wiley, 2001.
    [112] W Franks, W Schenker, P Schmutz, et al., “Impedance characterization and modeling of electrodes for biomedical applications,” IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1295-1302, 2005.
    [113] ET Mcadams, A Lackermeier, JA Mclaughlin, et al., “The linear and nonlinear electrical - properties of the electrode-electrolyte interface,” Biosensors & Bioelectronics, vol. 10, pp. 67-74, 1995.
    [114] J Kao, S Narendra, A Chandrakasan, “Subthreshold leakage modeling and reduction techniques,” IEEE/ACM International Conference on Cad-02, Digest of Technical Papers, pp. 141-148, 2002.
    [115] Y. Taur, T. H. Ning, “Fundamentals of modern VLSI devices,” Cambridge University Press, Cambridge, 1998.
    [116] J. T. Wu, “Handout of data-conversion integrated circuits,” Taiwan: NCTU, 2010.
    [117] R. J. Baker and Institute of Electrical and Electronics Engineers., “CMOS circuit design, layout, and simulation,” 2nd ed. New York: IEEE Press, 2005.
    [118] F Heer, W Franks, A Blau, et al., “CMOS microelectrode array for the monitoring of electrogenic cells,” Biosensors & Bioelectronics, vol. 20, pp. 358-366, Sep 15, 2004.
    [119] K.R. Williams, B. Adhyaru, I. German and T. Russell, “Determination of adiffusion coefficient by capillary electrophoresis. An experiment for thephysical and biophysical chemistry laboratories,”J. Chem. Educ., vol. 79, pp.1475-1476, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE