簡易檢索 / 詳目顯示

研究生: 邱文彥
Chiu, Wen-Yen
論文名稱: 在磁陷阱中的超冷鉀-銣混合物
Ultracold K-Rb Mixtures in Magnetic Trap
指導教授: 劉怡維
Liu, Ti-Wei
口試委員: 王立邦
Wang, Li-Bang
童世光
Tung, Shih-Kuang
張銘顯
Chang, Ming-Shien
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 冷原子磁陷阱
外文關鍵詞: cold atom, potassium, rubidium, magnetic trap
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們首先設計一個新版本的光放大與光整形光路,用以改善光纖在同時擁有兩種不同波長 ( 766 nm 和 780 nm ) 的入射光下的耦合效率,藉此達到實驗所需之光強度。另外,為了得到比螢光法 ( fluorescence imaging method ) 更精確的原子數與原子密度量測,我們亦完成架設鉀原子系統的吸收影像法 ( absorption imaging method ) 光路。

    首先,我們於磁光陷阱 ( magneto-optical trap ) 中捕捉了約 $2.3\times 10^{8}$ 個鉀原子,緊接著藉由亞都卜勒雷射冷卻 ( sub-Doppler cooling ) 的技術冷卻鉀原子至低於 200 $\mu$K,並將約 10\,\% 的原子載入磁陷阱 ( magnetic trap ),之後我們再將約 24\,\% 的鉀原子由磁陷阱磁轉移到 science cell,並以吸收影像法來量測並分析原子團。最終我們在 science cell 中得到約 $5.3\times 10^{6}$ 個鉀原子,其對應之溫度與生命週期分別約為 155 $\mu$K 與 32.44 秒。

    此外,我們亦成功同時磁轉移 $1.8\times 10^{7}$ 個銣原子與 $3.1\times 10^{6}$ 個鉀原子至 science cell,其相對應之溫度分別為 133 $\mu$K 與 160 $\mu$K。因為在磁阱中異核原子的混合與碰撞會造成額外的損耗,所以鉀原子的生命週期降為約 27.06 秒。


    In this work, we have designed a new version of power amplifier and beam shaping which have been employed successfully for cooling and repumping light after second tapered amplifier for better coupling efficiency of both potassium and rubidium simultaneously. We have also constructed the setup of absorption image technique for more accurate measurements.

    In this experiment, $2.3\times10^{8}$ of cold potassium atoms were produced in the MOT, and about 10\,\% of them were loaded into the magnetic trap. The subsequent magnetic transferring to the science cell was achieved with a linear moving track and an efficiency of 24\,\%. After transferring to science cell, the lifetime increased to 32.44 s due to the reduced background collision.

    Meanwhile, we also trapped and transferred $^{39}\rm{K}$ and $^{87}\rm{Rb}$ simultaneously to the science cell. The number is $3.1\times10^{6}$ with a temperature 160 $\mu$K for potassium and $1.8\times10^{7}$ with a temperature 133 $\mu$K for rubidium, respectively. Because of the additional loss caused by the inter-species collision, the lifetime of $^{39}\rm{K}$ was reduced to 27.06 s.

    1 Introdction vi 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Theoretical background 2 2.1 Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Magneto-Optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Magnetic quadrupole trap . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Experimental Setup 7 3.1 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 MOT Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.2 Science Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Rb Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 K Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.3 Power Amplifier and Beam Shaping . . . . . . . . . . . . . . . . 17 3.3 Magnetic Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Detecting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 Fluorescence Imaging . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 Absorption Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . 30 4 Experiment with 39 K 31 4.1 Cold-Atomic Fluorescence Spectroscopy . . . . . . . . . . . . . . . . . . 31 4.2 3D MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 MOT Laser Parameters . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 MOT Field Gradient . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.3 MOT Loading Time . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Optical Molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 Optical Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5 Magnetic Catch and Trapping . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 Magnetic Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.7.1 Atomic Number and Density Measurement . . . . . . . . . . . . 46 4.7.2 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . 49 4.7.3 Lifetime Measurement . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Experiment with 39 K- 87 Rb mixture 54 5.1 Dual-Species MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1 MOT Laser Parameters . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.2 MOT Field Gradient . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.3 MOT Loading Time . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.4 Measurement of the Cross Species Trap Loss Rate . . . . . . . . . 57 5.2 Optical Molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Optical Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4 Magnetic Catch, Trapping and Transport . . . . . . . . . . . . . . . . . . 64 5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5.1 Atomic Number and Density Measurement . . . . . . . . . . . . 65 5.5.2 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . 68 5.5.3 Lifetime Measurement . . . . . . . . . . . . . . . . . . . . . . . . 71 5.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 Summary and Future Work 75 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Appendices 76

    [1] Theodor W Hänsch and Arthur L Schawlow. Cooling of gases by laser radiation.
    Optics Communications, 13(1):68–69, 1975.
    [2] Steven Chu, Leo Hollberg, John E Bjorkholm, Alex Cable, and Arthur Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters, 55(1):48, 1985.
    [3] EL Raab, M Prentiss, Alex Cable, Steven Chu, and David E Pritchard. Trapping of
    neutral sodium atoms with radiation pressure. Physical Review Letters, 59(23):2631, 1987.
    [4] NWM Ritchie, ERI Abraham, YY Xiao, CC Bradley, RG Hulet, and Paul S Julienne.
    Trap-loss collisions of ultracold lithium atoms. Physical Review A, 51(2):R890, 1995.
    [5] Christopher D Wallace, Timothy P Dinneen, Kit-Yan N Tan, Timothy T Grove, and
    Phillip L Gould. Isotopic difference in trap loss collisions of laser cooled rubidium
    atoms. Physical review letters, 69(6):897, 1992.
    [6] RS Williamson and T Walker. Magneto-optical trapping and ultracold collisions of
    potassium atoms. JOSA B, 12(8):1393–1397, 1995.
    [7] D Sesko, T Walker, C Monroe, A Gallagher, and C Wieman. Collisional losses from
    a light-force atom trap. Physical review letters, 63(9):961, 1989.
    [8] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, Eric A
    Cornell, et al. Observation of bose-einstein condensation in a dilute atomic vapor.
    science, 269(5221):198–201, 1995.
    [9] Kendall B Davis, M-O Mewes, Michael R Andrews, NJ Van Druten, DS Durfee,
    DM Kurn, and Wolfgang Ketterle. Bose-einstein condensation in a gas of sodium
    atoms. Physical review letters, 75(22):3969, 1995.
    [10] A Fioretti, D Comparat, A Crubellier, O Dulieu, F Masnou-Seeuws, and P Pillet.
    Formation of cold cs 2 molecules through photoassociation. Physical Review Letters,
    80(20):4402, 1998.
    [11] Selim Jochim, Markus Bartenstein, Alexander Altmeyer, Gerhard Hendl, Stefan Riedl, Cheng Chin, J Hecker Denschlag, and Rudolf Grimm. Bose-einstein condensation of molecules. Science, 302(5653):2101–2103, 2003.
    [12] L De Sarlo, P Maioli, G Barontini, J Catani, F Minardi, and M Inguscio. Collisional
    properties of sympathetically cooled k 39. Physical Review A, 75(2):022715, 2007.
    [13] Jayita Banerjee, David Rahmlow, Ryan Carollo, Michael Bellos, Edward E Eyler,
    Phillip L Gould, and William C Stwalley. Direct photoassociative formation of ul-
    tracold krb molecules in the lowest vibrational levels of the electronic ground state.
    Physical Review A, 86(5):053428, 2012.
    [14] Xiao-Feng Shi. Rydberg quantum gates free from blockade error. Physical Review
    Applied, 7(6):064017, 2017.
    [15] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Reviews of modern physics, 62(3):531, 1990.
    [16] Alan L Migdall, John V Prodan, William D Phillips, Thomas H Bergeman, and
    Harold J Metcalf. First observation of magnetically trapped neutral atoms. Physical
    Review Letters, 54(24):2596, 1985.
    [17] S. B. Papp and University of Colorado at Boulder. Physics. Experiments with a two-species Bose-Einstein condensate utilizing widely tunable interparticle interactions. PhD thesis, University of Colorado at Boulder, 2007.
    [18] J. R. Chen. Ultracold Collisions of Rubidium Atoms and Molecules. PhD thesis, National Tsing Hua University, 2016.
    [19] Robert A Nyman, Gaël Varoquaux, Brice Villier, Delphine Sacchet, Frédéric Moron, Yann Le Coq, Alain Aspect, and Philippe Bouyer. Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments. Review of Scientific Instruments, 77(3):033105, 2006.
    [20] J. M. Lin. Sub-doppler cooling and magnetic transfer of ultracold potassium atoms. Master’s thesis, National Tsing Hua University, 2014.
    [21] Daniel A Steck. Rubidium 87 d line data, 2001.
    [22] T Kishimoto, J Kobayashi, K Noda, K Aikawa, M Ueda, and S Inouye. Direct evapo-
    rative cooling of k 41 into a bose-einstein condensate. Physical Review A, 79(3):031602,2009.
    [23] C Fort, A Bambini, L Cacciapuoti, FS Cataliotti, M Prevedelli, GM Tino, and M In-
    guscio. Cooling mechanisms in potassium magneto-optical traps. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 3(2):113–118, 1998.
    [24] Vandna Gokhroo, G Rajalakshmi, R Kollengode Easwaran, and CS Unnikrishnan.
    Sub-doppler deep-cooled bosonic and fermionic isotopes of potassium in a compact
    2d+–3d mot set-up. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(11):115307, 2011.
    [25] Robert Lorne Dugald Campbell. Thermodynamic properties of a Bose gas with tuneable interactions. PhD thesis, University of Cambridge, 2011.
    [26] M. Landini, S. Roy, L. Carcagní, D. Trypogeorgos, M. Fattori, M. Inguscio, and
    G. Modugno. Sub-doppler laser cooling of potassium atoms. Phys. Rev. A, 84:043432,
    Oct 2011.
    [27] Manuele Landini. A tunable Bose-Einstein condensate for quantum interferometry. PhD thesis, Università degli Studi di Trento, 2011.
    [28] Heather J Lewandowski, DM Harber, Dwight L Whitaker, and Eric A Cornell. Sim-
    plified system for creating a bose–einstein condensate. Journal of low temperature physics, 132(5-6):309–367, 2003.
    [29] MS Santos, P Nussenzveig, LG Marcassa, K Helmerson, J Flemming, SC Zilio, and
    VS Bagnato. Simultaneous trapping of two different atomic species in a vapor-cell
    magneto-optical trap. Physical Review A, 52(6):R4340, 1995.
    [30] Thad Walker, David Sesko, and Carl Wieman. Collective behavior of optically trapped neutral atoms. Phys. Rev. Lett., 64:408–411, Jan 1990.
    [31] L Marcassa, V Bagnato, Ying-ju Wang, C Tsao, J Weiner, O Dulieu, YB Band, and
    Paul S Julienne. Collisional loss rate in a magneto-optical trap for sodium atoms:
    Light-intensity dependence. Physical Review A, 47(6):R4563, 1993.
    [32] L. G. Marcassa, G. D. Telles, S. R. Muniz, and V. S. Bagnato. Collisional losses in a
    k-rb cold mixture. Phys. Rev. A, 63:013413, Dec 2000.
    [33] J Goldwin, SB Papp, B DeMarco, and DS Jin. Two-species magneto-optical trap with 40 k and 87 rb. Physical Review A, 65(2):021402, 2002.
    [34] G. D. Telles, L. G. Marcassa, S. R. Muniz, S. G. Miranda, A. Antunes, C. Westbrook,
    and V. S. Bagnato. Inelastic cold collisions of a na/rb mixture in a magneto-optical
    trap. Phys. Rev. A, 59:R23–R26, Jan 1999.
    [35] James P. Shaffer, Witek Chalupczak, and N. P. Bigelow. Trap loss in a two-species
    na-cs magneto-optical trap: Intramultiplet mixing in heteronuclear ultracold collisions. Phys. Rev. A, 60:R3365–R3368, Nov 1999.
    [36] Naaman Tammuz. Thermodynamics of ultracold 39 K atomic Bose gases with tuneable interactions. PhD thesis, University of Cambridge, 2011.

    QR CODE