研究生: |
張競謙 |
---|---|
論文名稱: |
AlxCrMnFe1.5Niy高熵合金之腐蝕及電化學性質行為研究 Corrosion and Electrochemical Properties of AlxCrMnFe1.5Niy High Entropy Alloys |
指導教授: | 施漢章 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | AlxCrMnFe1.5Niy高熵合金 、腐蝕 、極化掃描 、循環極化掃描 、電化學阻抗頻譜 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AlxCrMnFe1.5Ni0.5高熵合金於先前之研究中顯示,其具有絕佳之強度、硬度、及高溫時效硬化能力,且在高溫環境中不易發生軟化的現象,因此於機械性質上已被廣泛研究,然而其腐蝕性質方面之研究至今仍一無所知。如觀察此AlxCrMnFe1.5Ni0.5高熵合金之主要元素,其組成與一般商用之304不□鋼相似,雖多了活性元素Al之存在,然Ni元素之添加有助於表面鈍態膜之形成,而Cr元素之存在則有助於合金抗氯鹽孔蝕破壞之能力,因此於本實驗中將分別改變Al及Ni之莫耳比例,並與304不□鋼作一比較。
AlxCrMnFe1.5Ni0.5 (x=0.3, 0.5)高熵合金於酸性環境或含有氯鹽之環境中,合金中之Al成份易與溶液作用造成腐蝕破壞,使試片表面因而產生破壞十分嚴重的許多孔洞;且由於Al元素之存在,會使得表面之鈍態膜較缺穩定性,因而於含有氯離子之硫酸溶液中其鈍態膜對於氯鹽之存在較為敏感,極為容易產生崩破之現象。
對於Al0.3CrMnFe1.5Ni0.5高熵合金欠佳之抗蝕能力,藉由將合金成分中Ni之含量提高至1份,會有助於表面鈍態膜之完整及保護能力,因而可有效的提升於硫酸溶液中抗蝕之能力,然而由於合金中仍有Al元素之存在,Al0.3CrMnFe1.5Ni1高熵合金對於氯離子之存在仍極為敏感,因此在含有氯離子之環境中,試片之表面仍會產生一相當嚴重之破壞,此結果可由SEM之觀察而清楚了解。
六、參考文獻
1 、 陳宣佑,“Al-Cr-Cu-Fe-Mn-Ni 高熵合金變形及退火行為之研究”, 國立清華大學材料科學工程研究所碩士論文,2004
2 、 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996
3 、 賴高廷,“高亂度合金微結構及性質探討” ,國立清華大學材料科學工程研究所碩士論文, 1998
4 、 許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究” ,國立清華大學材料科學工程研究所碩士論文, 2000
5 、 洪育德, “Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文,2001
6 、 陳家裕,“塗層用多元高熵合金之開發”,國立清華大學材料科學工程研究所碩士論文,2002
7 、 童重縉, “Cu-Co-Ni-Cr-Al-Fe 高熵合金變形結構與高溫特性之研究”, 國立清華大學材料科學工程研究所碩士論文, 2002
8 、 Herbert H. Uhlig and R. Winston revie, “Corrosion and Corrosion Control”, 3rd ed., John Wiley and sons, 1991
9 、 Denny A. Jones, “Principle and Prevention of Corrosion”, 2nd ed., Simon & Schuster, 1996
10、 Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung Shun, Chun-Huei Tsau, and Shou-Yi Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Meterials 2004, 6, No. 5, p. 299 – 303
11、 J. Kramer, Z. Phys., 37, 639, (1934)
12、 J. Kramer, Annln Phys., 37, 19, (1934)
13、 A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950)
14、 P. Duwez, Trans. Am. Soc. Metals, 60, 607, (1967)
15、 H. W. Kui, A. L. Greer and D. Turnbull, applied Physics Letter, 45, 6, 615-616, (1984)
16、 J. R. Scully, “ Polarization Resistance Method for Determination of Instantaneous Corrosion Rates” Corrosion, Vol. 56, No. 2
17、 Denny A. Jones, “Principle and Prevention of Corrsion”, 2nd ed., Simon & Schuster, 1996
18、 Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit, “ELECTROCHEMICAL TECHNIQUES IN CORROSION SCIENCE AND ENGINEERING”, Marcel Dekker, Inc. New York, 2003
19、 Herbert H. Uhlig and R. Winston Revie, “Corrosion and Corrosion Control”, 3rd ed., John Wiley and sons, 1991
20、 Princeton Applied Research, “Basics of Electrochemical Impedance Spectroscopy”, Application Note AC-1
21、 K. M. Ismail, A. M. Fathi, and W. A. Badawy, “ Effect of Nickel Content on the Corrosion and Passivation of Copper-Nickel Alloys in Sodium Sulfate Solutions’’ Corrosion, Vol. 60, No. 9
22、 C. F. Zinola, A. M. Castro Luna, “The inhibition of Ni Corrosion in H2SO4 Solutions containing simple Non-saturated substances”, Corros. Sci, Vol. 37, No. 12, pp1919-1929, 1995
23、 M. R. F. Hurtado, P. T. A. Sumodjo, A. V. Benedetti, “Electrochemical studies with a Cu-5wt.%Ni alloy in 0.5M H2SO4”, Electrochim. Acta 48 (2003) 2791-2798
24、 R. C. Newman, “Understanding the Corrosion of Stainless Steel”, 2001 W. R. Whitney Award Lecture, Corrosion, Vol. 57, No. 12
25、 C. J. Park, V. Shankar Rao, and H. S. Kwon, “Effects of Sigma Phase on the Initiaion and Propagation of Pitting Corrosion of Duplex Stainless Steel”, Corrosion, Vol. 61, No. 1
26、 Chris Xhoffer, Krista Van den Bergh, Henri Dillen, “Electrochemistry: a powerful analytical tool in steel research”, Electrochim. Acta 49(2004) 2825-2831
27、 J. H. Russell, B. S. Covino, Jr., and Bullard, “Application of electrochemical Methods for Investigations of Localized Corrosion of Nitrogen-Molybdenum Stainless Steels”, Corrosion, Vol. 57, No. 4
28、 P. Li, T. C. Tan and J. Y. Lee, “Impedance spectra of the anodic dissolution of Mild Steel in Sulfuric acid”, Corros. Sci., Vol. 38, No. 11, pp. 1935-1955, 1996
29、 D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, “EIS and XPS study of surface modification of 316LVM stainless steel after passivation”, Corros. Sci 41(1999) 275-289
30、 Iva Betova, Martin Bojinov, Timo Laitinen, Kari Makela, Pekka Pohjanne, Timo Saario, “the Transpassive dissolution mechanism of highly alloyed stainless steels 1. Experimental results and modeling procedure”, Corros. Sci. 44 (2002) 2675-2697
31、 Iva Betova, Martin Bojinov, Timo Laitinen, Kari Makela, Pekka Pohjanne, Timo Saario, “the Transpassive dissolution mechanism of highly alloyed stainless steels II Effect of pH and solution anion on the kinetics”, Corros. Sci. 44 (2002) 2699-2723
32、 M. Bojinov, I. Betova and R. Raicheff, “ A Model for the Transpassivity of Molybdenum in acidic sulphate solutions based on ac impedance measurements”, Electrochim. Acta, Vol. 41, Nos. 7/8, pp. 1173-1179, 1996
33、 Houyi Ma, Shenhao Chen, Bingsheng Yin, Shiyong Zhao, Xiangqian Liu, “ Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions”, Corros. Sci. 45 (2003) 867-882
34、 F. M. Reis, H. G. de Melo, I. Costa, “ EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer”, Electrochim. Acta 51 (2006) 1780-1788
35、 I. V. Aoki, M.-C. Bernard, S. I. Cordoba de Torresi, C. Deslouis, H. G. de Melo, S. Joiret, B. Tribollet, “ Ac-impedance and Raman spectroscopy study of the electrochemical behavior of pure aluminium in citric acid media”, Electrochim. Acta 46 (2001) 1871-1878
36、 T. M. Yue, L. J. Yan, C. P. Chan, C. F. Dong, H. C. Man, G. K. H. Pang, “Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance”, surface and Coating technology 179 (2004) 158-164
37、 A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, P. Marcus, “ Corrosion mechanism of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS”, Corros. Sci. 45 (2003) 2513-2524
38、 P. Q. Atkins, Physical Chemistry, 4th ed. (Oxford, U.K.: Oxford university Press, 1990)
39、 Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel”, Corros. Sci (2004)
40、 Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corros. Sci. 47 (2005) 2257-2279
41、 F.I. Wei, J.T. Hsu, J.Y. Wu, H.C. Shih, J.C. Oung, “Applications of electrochemical hysteresis for constructing the experimental potential-pH diagram for steels in seawater”, Mat. Chem. and Phys., 37 (1994) 230-236
42、 Ku-ling Chang, Jyh-Wei Hsu, Xing Jian Guo, and Han C. Shih, “Effect of MEVVA-implanted Cr on the electrochemical behavior of CrN-coated steels”, J. Mater. Res., Vol. 19, No. 8, 2004
43、 張顧齡, “被覆氮化鉻鋼材的電化學行為研究”, 清華大學材料科學工程研究所博士論文, 2004
44、 林家旭,“Fe2AlCoCrNiMo0.5高熵合金在室溫下之電化學性質”, 國立清華大學材料工程研究所碩士論文, 2005