研究生: |
郭家豪 |
---|---|
論文名稱: |
最佳18個實驗點之直交表 Optimal 18-Run Orthogonal Array |
指導教授: |
鄭少為
Cheng Shao-Wei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 同構 、指標函數 、字長型態 、Minimum Aberration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了確保一個實驗能對有興趣的效應做最有效的估計,我們常會針對設計定出一些評量優劣的準則。而如何根據準則來搜尋最佳設計則是實驗者必須面臨的重要課題。本篇論文不只回顧了有關指標函數,
字長型態, Minimum Aberration 和建構非同構設計有關的文獻外,我們以 $OA(18,3^{p})$ 和 $OA(18,2^{1}3^{p})$ 為主,在因子設計和區集設計上,皆尋找出最佳之設計並討論其特性,以供實驗者參考與選擇。而在處理因子為3水準以上且為定量之區集設計,在以前的文獻並未有人仔細的探討過,這是本研究主要的探討標的。對此,我們將定義新的字長型態及 Minimum Aberration 準則,並據此來搜尋最佳區集設計。而在得到最佳區集設計後如何判別其是否同構,也是重點之一。我們將由幾何同構的觀點出發,在處理因子為定量之區集設計上定義出新的同構判別方法,並將此定義更加的推廣與應用。
\bibitem{}
Chen, H. and Cheng, C. S. (1999). Theory of Optimal Blocking of $2^{n-m}$ Design.
\textit{The Annals of Statistics}, {\bf 27}, 1948-1973.
\bibitem{}
Cheng, S.-W., Li, W. and Ye, K.Q.(2004). Blocked nonregular two-level
factorial designs.
\textit{Technometrics}, {\bf 46}, 269-279.
\bibitem{}
Cheng, S.-W., and Wu, C.-F. J.(2002). Choice of optimal blocking schemes
in two-level and three-level designs.
\textit{Technometrics}, {\bf 44}, 269-277.
\bibitem{}
Cheng, S.-W., and Ye, K.Q. (2004). Geometric isomorphism and minimum
aberration for factorial design with quantitative factors.
\textit{The Annals of Statistics}, {\bf 32}, 2168-2185.
\bibitem{}
Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of Two-Level
Factorial Fractions.
\textit{Journal of Statistical Planning and Inference}, {\bf 87}, 149-172.
\bibitem{}
Fries, A. and Hunter, W. G. (1980). Minimun aberration $2^{k-p}$ designs.
\textit{Technometrics}, {\bf 22}, 601-608.
\bibitem{}
Sitter, R. R., Chen, J. and Feder, M. (1997). Fractional Resolution and Minimum Aberration
in Blocked $2^{n-k}$ Design.
\textit{Technometrics}, {\bf 39}, 382-390.
\bibitem{}
Sun D., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially constructing non-isomorphic
orthogonal designs and its applications.
Technical Report, Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook, SUNYSB-AMS-02-13.
\bibitem{}
Sun, D. X., Wu, C.-F. J. and Chen, Y. (1997). Optimal Blocking Schemes for $2^{n}$ and
$2^{n-p}$ Design.
\textit{Technometrics}, {\bf 39}, 298-307.
\bibitem{}
Tang, B. and Deng, L.-Y. (1999). Minimum $G_{2}$-aberration for nonregular fractional
factorial designs.
\textit{Ann. Statist.}, {\bf 27}, 1914-1926.
\bibitem{}
Tsai, K.-J.(2005). A complete catalog of geometrically
non-isomorphic 18-run orthogonal arrays.
\textit{Ph.D. dissertation, Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook}.
\bibitem{}
Wu, C.-F. J. and Hamada, M. (2000). Experiments: Planning, Analysis and Parameter Design
Optimization. Wiley, New York.
\bibitem{}
Xu, H., and Wu, C.-F. J. (2001). Generalized minimum aberration for asymmetrical
fractional factorial designs.
\textit{The Annals of Statistics}, {\bf 29}, 1066-1077.
\bibitem{}
Xu, H. (2005). A catalogue of three-level regular factional factorial designs.
\textit{Metrika}, {\bf 62}, 259-281.
\bibitem{}
Ye, K. Q. (2003). Indicator Function and its Application in Tow-level Factorial
Designs.
\textit{The Annals of Statistic}, {\bf 31}, 984-994.