簡易檢索 / 詳目顯示

研究生: 郭家豪
論文名稱: 最佳18個實驗點之直交表
Optimal 18-Run Orthogonal Array
指導教授: 鄭少為
Cheng Shao-Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 同構指標函數字長型態Minimum Aberration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了確保一個實驗能對有興趣的效應做最有效的估計,我們常會針對設計定出一些評量優劣的準則。而如何根據準則來搜尋最佳設計則是實驗者必須面臨的重要課題。本篇論文不只回顧了有關指標函數,
    字長型態, Minimum Aberration 和建構非同構設計有關的文獻外,我們以 $OA(18,3^{p})$ 和 $OA(18,2^{1}3^{p})$ 為主,在因子設計和區集設計上,皆尋找出最佳之設計並討論其特性,以供實驗者參考與選擇。而在處理因子為3水準以上且為定量之區集設計,在以前的文獻並未有人仔細的探討過,這是本研究主要的探討標的。對此,我們將定義新的字長型態及 Minimum Aberration 準則,並據此來搜尋最佳區集設計。而在得到最佳區集設計後如何判別其是否同構,也是重點之一。我們將由幾何同構的觀點出發,在處理因子為定量之區集設計上定義出新的同構判別方法,並將此定義更加的推廣與應用。


    1.緒論 2.文獻探討 3.$OA(18,3^{p})$ 和 $OA(18,2^{1}3^{p})$ 之最佳因子設後 4.$OA(18,3^{p})$ 和 $OA(18,2^{1}3^{p})$ 之最佳區集設計 5.結論

    \bibitem{}
    Chen, H. and Cheng, C. S. (1999). Theory of Optimal Blocking of $2^{n-m}$ Design.
    \textit{The Annals of Statistics}, {\bf 27}, 1948-1973.

    \bibitem{}
    Cheng, S.-W., Li, W. and Ye, K.Q.(2004). Blocked nonregular two-level
    factorial designs.
    \textit{Technometrics}, {\bf 46}, 269-279.

    \bibitem{}
    Cheng, S.-W., and Wu, C.-F. J.(2002). Choice of optimal blocking schemes
    in two-level and three-level designs.
    \textit{Technometrics}, {\bf 44}, 269-277.

    \bibitem{}
    Cheng, S.-W., and Ye, K.Q. (2004). Geometric isomorphism and minimum
    aberration for factorial design with quantitative factors.
    \textit{The Annals of Statistics}, {\bf 32}, 2168-2185.

    \bibitem{}
    Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of Two-Level
    Factorial Fractions.
    \textit{Journal of Statistical Planning and Inference}, {\bf 87}, 149-172.

    \bibitem{}
    Fries, A. and Hunter, W. G. (1980). Minimun aberration $2^{k-p}$ designs.
    \textit{Technometrics}, {\bf 22}, 601-608.

    \bibitem{}
    Sitter, R. R., Chen, J. and Feder, M. (1997). Fractional Resolution and Minimum Aberration
    in Blocked $2^{n-k}$ Design.
    \textit{Technometrics}, {\bf 39}, 382-390.

    \bibitem{}
    Sun D., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially constructing non-isomorphic
    orthogonal designs and its applications.
    Technical Report, Department of Applied Mathematics and Statistics,
    State University of New York at Stony Brook, SUNYSB-AMS-02-13.

    \bibitem{}
    Sun, D. X., Wu, C.-F. J. and Chen, Y. (1997). Optimal Blocking Schemes for $2^{n}$ and
    $2^{n-p}$ Design.
    \textit{Technometrics}, {\bf 39}, 298-307.

    \bibitem{}
    Tang, B. and Deng, L.-Y. (1999). Minimum $G_{2}$-aberration for nonregular fractional
    factorial designs.
    \textit{Ann. Statist.}, {\bf 27}, 1914-1926.

    \bibitem{}
    Tsai, K.-J.(2005). A complete catalog of geometrically
    non-isomorphic 18-run orthogonal arrays.
    \textit{Ph.D. dissertation, Department of Applied Mathematics and Statistics,
    State University of New York at Stony Brook}.

    \bibitem{}
    Wu, C.-F. J. and Hamada, M. (2000). Experiments: Planning, Analysis and Parameter Design
    Optimization. Wiley, New York.

    \bibitem{}
    Xu, H., and Wu, C.-F. J. (2001). Generalized minimum aberration for asymmetrical
    fractional factorial designs.
    \textit{The Annals of Statistics}, {\bf 29}, 1066-1077.

    \bibitem{}
    Xu, H. (2005). A catalogue of three-level regular factional factorial designs.
    \textit{Metrika}, {\bf 62}, 259-281.

    \bibitem{}
    Ye, K. Q. (2003). Indicator Function and its Application in Tow-level Factorial
    Designs.
    \textit{The Annals of Statistic}, {\bf 31}, 984-994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE