簡易檢索 / 詳目顯示

研究生: 陳雲飛
Chen, Yun-Fei
論文名稱: 超臨界有機朗肯循環之渦輪機分析與研究
Research and Development of a Supercritical Organic Rankine Cycle (SORC) Turbine
指導教授: 蔣小偉
Chiang, Hsiao-Wei
口試委員: 郭啟榮
徐菘蔚
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: ORC渦輪餘熱回收
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球能源使用以熱能形式占能源消耗量90%以上,其中僅40%熱能轉換為製程熱能、機械功、電力或化學能;其餘50%熱能則以廢熱形式排放於環境,故中低階餘熱回收的市場量相當可觀。目前主要餘熱回收方式為有機朗肯循環(ORC),其有機流體有較低沸點溫度可適用於低溫熱源蒸發,其效率大多落在10%出頭。為了更進一步提升效率,目前學術界多朝超臨界循環研究。超臨界有機朗肯循環(SORC)乃將有機流體加壓至臨界點以上,使做功段擁有更大的能量差,但其工作條件所需的設配較為嚴苛,其研究量也尚不完備,固本研究將針對SORC之做功元件進行研究。
    首先為了決定做功元件設計規格,必須確定使用的工作流體和熱力性質。研究過程中,首先針對200℃和300℃熱源溫度進行超臨界流體效率比較,並同時和次臨界循環做比對。200℃熱源的效率最佳的超臨界流體比次臨界提升了7%;而300℃下可提升20%。回收溫度300℃下效率最佳的超臨界態流體為R123,其效率可達17.71%。
    根據其熱力條件和發電需求將採用徑向式渦輪作為研究目標, 並根據文獻[32]中針對次臨界流體的徑向式渦輪參數設計方法,進行超臨界R123的渦輪參數設計,並將設計結果用CFD軟體進行流場模擬,除了透過模擬結果對比參數計算結果外,可針對轉子葉形進行最佳化調整,以得到最大輸出與做功效率。並將設計完成之超臨界R123渦輪轉子與次臨界流體之渦輪轉子文獻進行比較討論。


    For now the global energy use ,over 90% energy consumption is in heat form ,but only 40% heat energy be transferred into mechanical work , electricity or chemical energy etc; the rest 50% would be emitted as the waste heat, so it is considerable to the low and medium waste heat recover market . For now the primary waste heat recover way is Organic Rankin Cycle (ORC). The organic fluid has a lower boiling temperature suitable for the low temperature heat source to evaporate. The efficiency is about 10%. In order to further raise the efficiency, the academic community takes their research in supercritical cycle. Supercritical Organic Rankin Cycle (SORC) is to pressurize the organic fluid over the critical point to produce larger energy gap to make work. But the equipment in need would have more restrictions due to the working condition, also the incompleteness of the research data. According to this the research put the emphasis on the SORC working component.

    First is to decide the designation of the component. We have to decide the working fluid and its thermal character. In the research procedure, we compare the 200℃ and 300℃ heat source temperature efficiency and compare it to the subcritical cycle. To the 200℃ fluid the best efficiency only 0.78% better than the subcritical but 2.95% in 300℃. The best efficiency fluid in 300℃ is R123 which can reach to 17.71%.

    According to the thermal condition and the working range we use radial turbine as the research target. Do the fluid simulation using subcritical fluid coefficient of the radial turbine according to document [23]. Compare the result and the isentropic efficiency to confirm the reliability of the simulation .Use the same model to the supercritical fluid’s thermal character then compare and discuss their results. In the future, we would consult the related document about the advised range of the radial turbine coefficient to design R123 stator and rotator, then adjust the coefficient due to the simulation result to get the largest output and best working efficiency.

    摘要 I 符號說明 IX 第一章、 緒論 1 1-1、 前言 1 1-2、 研究動機 2 1-3、 研究目的 3 1-4、 文獻回顧 4 第二章、 研究系統與原理介紹 13 2-1、 超臨界有機朗肯循環 13 2-1-1、朗肯循環系統介紹 13 2-1-2、次臨界與超臨界朗肯循環 15 2-1-3、工作流體選擇 16 2-1-4、有機朗肯循環效率參數 18 2-2、 渦輪機結構與理論介紹 18 2-2-1、軸向與徑向式渦輪 18 2-2-2、衝擊式與反動式渦輪 20 2-2-3、定子與轉子及站位 22 2-2-4、角度與速度三角形 24 2-2-5、渦輪機相關參數 25 第三章、 研究方法 31 3-1、 熱源條件選定 32 3-2、 超臨界ORC數值模型 32 3-3、 工作流體效率分析 34 3-4、 做功元件類型比較 35 3-5、 葉形參數設計 37 3-6、 CAD模型建立 41 3-7、 CFD流場模擬 43 3-7-1、 流道幾何模型與網格建立 43 3-7-2、 物理模型與求解設定 44 3-7-3、 邊界條件與收斂條件 45 3-8、 完成SORC整體性能計算 45 第四章、 結果與討論 47 4-1、ORC數值計算程式驗證 47 4-2、流體效率分析結果 49 4-3、渦輪機參數設計分析 53 4-4、設計參數最佳化 67 4-5、CFD模擬程式驗證 69 4-6、CFD轉子模擬分析 71 4-7、SORC性能分析與文獻比較 91 第五章、 結論 95 5-1、 熱源溫度300℃選用R123 96 5-2、 R123與ISOPENTANE渦輪設計參數比較 96 5-3、 CFD模擬結果 96 5-4、 R123-SORC與文獻比較 97 5-5、 未來建議 97 參考文獻 98

    Gary J. Zyhowski, Andrew P. Brown, Abdennacer Achaichiab” HFC-245fa Working Fluid in Organic Rankine Cycle - A Safe and
    Economic Way to Generate Electricity from Waste Heat” 14-17th june 2010, Lausanne, Switzerland
    Hsiao-Wei D. Chiang*, Chih-Yung Huang† and Sung-Wei Hsu’’ Performance analysis and optimization of a transcritical ORC system” ASME-ORC 2013 Book of Abstracts
    A. Schuster , S. Karellas , R. Aumann “Efficiency optimization potential in supercritical Organic Rankine Cycles” Energy 35 (2010) 1033–1039
    Zhang Shengjun*, Wang Huaixin, Guo Tao” Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation” Applied Energy 88 (2011) 2740–2754
    Markus Preibinger, Theresa Weith, and Dieter Bruggemann” Supercritical Organic Rankine Cycle for waste heat recovery at high temperatures” nternational Seminar on ORC Power Systems, TU Delft, 2011
    Hong Gao , Chao Liu, Chao He, Xiaoxiao Xu, Shuangying Wu and Yourong Li” Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery” Energies 2012,
    郭啟榮”中低溫工業廢熱有機朗肯循環發電與其經濟效益” Journal of Taiwan Energy Volume 1, No. 1, November 2013, pp. 71-84
    鄧立生、黃宏宇、何兆紅、窪田光宏、袁浩然、呼和濤力、小林敬幸”有機朗肯循環的研究進展” ADVANCES IN NEW AND RENEWABLE ENERGY, Vol 2, No3, Jun. 2014
    Junjiang Bao, LiZhao* ” A review of working fluid and expander selections for organic Rankine cycle” Renewable and Sustainable Energy Reviews 24(2013) 325–342
    Nillson H R.” Machine of the Screw-Compressor” Patent: US2620968, Dec. 9, 1952.
    Sprankle R S.” Electrical power generating systems” Patent: US3751673, Aug. 7, 1973.
    楊金煥,夏葵,姚艷霞等” 兩相螺桿膨脹機的發展及其在製冷系統中的應用[J]” 製冷,2003,22(1):23-27.
    李學鋒、趙峰、胡亮光等” 地熱能螺桿膨脹機 - 汽輪機複合動力系統[J]” 天津電力技術, 1994, 4:1-4.
    Ye-Qiang Zhang, Yu-Ting Wu*, Guo-Dong Xia, Chong-Fang Ma, Wei-Ning Ji, Shan-Wei Liu a, Kai Yang a, Fu-Bin Yang” Development and experimental study on organic Rankine cycle
    system with single-screw expander for waste heat recovery from
    exhaust of diesel engine” Energy xxx (2014) 1-10
    Chi-Ron Kuoa, Sung-Wei Hsua, Kai-Han Changb, Chi-Chuan Wangb, “Analysis of a 50 kW organic Rankine cycle system” Energy 36 (2011) 5877–5885
    Yanagisawa T, Fukuta M, Ogi Y, et al. “Performance of an oil-free scroll-type air expander[C]” Proceedings of the IMechE Conference on Compressors and their Systems, 2001, 167-174.
    Aoun B, Clodic D F. ”Theoretical and experimental study of an oil-free scroll type vapor expander[C]” Proceedings of International Compressor Engineering Conference, Purdue, USA: 2008 (Paper 1188).
    Lorentzen G. ”Revival of carbon dioxide as a refrigerant[J]. “ International Journal of Refrigeration, 1994, 17(5): 290-310.
    Sauret E, Rowlands A S. ”Candidate radial-inflow turbines and high-density working fluids for geothermal power systems[J]. “ Energy, 2011, 36: 4460-4467.
    Kang S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy[J]. 2012, 41(1): 514-24.
    Cho S Y, Cho H C, Ahn K Y, et al. A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy[J]. Energy, 2014, 64: 900-911.
    Daniele Fiaschi* , Giampaolo Manfrida , Francesco Maraschiello “Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles” Applied Energy 97 (2012) 601–608
    Daniele Fiaschi, Giampaolo Manfrida, Francesco Maraschiello “Design and performance prediction of radial ORC turboexpanders” Applied Energy 138 (2015) 517–532
    http://www.cheresources.com/
    S. Quoilin, M. Orosz, H. Hemond, V. Lemort,“ Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation” Solar Energy 85 (2011) 955–966.
    盧穎彥 “微型氣動空心軸渦輪發電系統之轉子設計與測試研究” 碩論(102)
    Marcel Dekker. “Axial Flow and Radial Flow Gas Turbines” Copyright 2003
    Harold E. Roblik “Analytical determination of radial inflow turbine design geometry for maximum efficiency” NASA Technical Note 1968
    李瑩,陳榴,戴韌,劉雪嬌 “徑向渦輪業片子五面型的優選設計” 工程熱物理學報 2013 第34卷 第五期
    Pedro J. Mago*, and Rogelio Luck ” Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles”
    S. L. Dixon, B. Eng., PH.D. “Fluid Mechanics” Thermodynamics of Turbomachinery, 4^thEdition.
    Kiyarash Rahbar , Saad Mahmoud, Raya K. Al-Dadah, Nima Moazami School of. “Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine” Energy Conversion and Management 91 (2015) 186–198
    黃一民 “超小型噴射引擎之性能研究” 碩論(91)
    Clemente S, Micheli D, Reini M, Taccani R. “Bottoming organic rankine cycle for a small scale gas turbine: a comparison of different solutions.” Appl Energy 2013;106:355–64.
    Fiaschi D, Manfrida G, Maraschiello F. Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles. Appl Energy 2012;97:601–8.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE