簡易檢索 / 詳目顯示

研究生: 江政穎
Jiang, Jheng-Ying
論文名稱: 即時有限元素模型動態次結構系統研發
The Development of Real-Time Finite Element Dynamically Substructured Systems
指導教授: 杜佳穎
Tu, Jia-Ying
口試委員: 陳榮順
Chen, Rong-Shun
王志宏
Wang, Jhih-Hing
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 動態次結構系統測試控制器設計有限元素法
外文關鍵詞: substructured system, controller design, finite element method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出輸出基礎架構的進階動態次結構測試方法,在次結構測試中,受
    測母系統拆解成兩個次結構,非線性和參數不易識別的物理次結構使用全比例測試法測試;而線性、容易建模的數值次結構則使用數值運算法做模擬。成功的次結構測試條件為:(1)設計強健的動態次結構控制器使得兩個次結構之接觸面輸出響應一致。(2)得到快速、穩定、準確的數值模擬輸出。本篇論文所提出之輸出基礎框架所設計的強健型控制器,搭配即時運算之有限元素法數值模型,可以使得動態次結構測試法的準確性提高,但是在實行即時控制時,其潛在問題例如數值模型的動態與敏感度、取樣頻率之間的關係則有待探討與改善。輸出基礎控制器的最大優點是在設計控制器時,完全不需要知道數值模型和物理元件的任何參數,只需即時量測所需要的輸出訊號即可。本論文使用樑彈簧阻尼系統,證明其能適用於輸出基礎框架與有限元素法數值模型,並能實際進行即時動態次結構測試實驗,展示本論文所提出之即時測試方法,未來能試用於複雜結構或大型機械系統之潛在可能性。本論文將從文獻回顧開始,討論各種動態測試方法之優缺點,以及如何推展至本論文所使用的輸出基礎動態次結構測試法及其推導過程;在被仿真系統的章節中,將介紹彈簧阻尼系統使用有限元素法建模於Simulink 與ANSYS 中;接著進行系統次結構化拆解並設計控制器模擬,為增加模型的複雜度與準確度,共使用了三種方式,首先是最基礎的單數值次結構系統,更進一步的兩種方法為使用靜態縮減法的雙數值次結構系統與使用奇異值分解法的次結構系統,之後則進行即時動態次結構測試實驗並與模擬結果做比較與討論;結論與未來工作則列於最後。


    中 文 摘 要 英 文 摘 要 目  錄 圖 目 錄 表 目 錄 第一章 緒論 1-1 研究動機 1-2 文獻回顧 1-3 研究目標 1-4 本文架構 第二章 動態次結構系統框架 2-1數值次結構基礎框架 2-1-1 轉移函數表達式之數值次結構基礎框架 2-1-2 狀態空間表達式之數值次結構基礎框架 2-2輸出基礎次結構框架 2-2-1 轉移函數表達式之輸出基礎次結構框架 2-2-2 狀態空間表達式之輸出基礎次結構框架 第三章 動態次結構系統之控制器發展 3-1數值次結構基礎之控制器發展 3-1-1 轉移函數表達式之數值次結構基礎控制器發展 3-1-2 狀態空間表達式之數值次結構基礎控制器發展 3-2輸出基礎次結構之控制器發展 3-2-1 轉移函數表達式之輸出基礎控制器發展 3-2-2 狀態空間表達式之輸出基礎控制器發展 第四章 被仿真系統-樑彈簧阻尼系統 4-1 有限元素法簡介 4-2 使用Simulink建模介紹 4-3 使用ANSYS建模介紹 4-4 有限元素樑建模介紹 4-4-1 靜態縮減法 4-4-2 奇異值分解法 第五章 樑彈簧阻尼系統之動態次結構系統 5-1 單數值與雙數值次結構動態次結構系統 5-2 奇異值分解法應用於動態次結構系統 5-3 系統識別 5-4 次結構誤差動態之轉移函數表達式 5-5 次結構誤差動態之狀態空間表達式 5-6 轉移函數表達式之控制器設計 5-7 狀態空間表達式之控制器設計 5-8 次結構系統穩定性分析 第六章 模擬與次結構測試實驗結果 6-1 次結構系統實驗機台 6-2 濾波器設計 6-3 單數值次結構系統 6-4 雙數值次結構系統 6-5 奇異值分解法次結構系統 6-6 改變激發訊號頻率時的模擬結果與實驗表現 6-7 改變數值次結構材料參數的模擬結果與實驗表現 6-8 討論 第七章 結論與未來工作 參 考 文 獻 附 錄

    [1] Williams, M.S. and A. Blakeborough, ”Laboratory Testing of Structures under Dynamic Loads: An Introductory Review,” Philosophical Transactions: Mathematical, Physical and Engineering Sciences, vol. 359, (1786), 2001, pp. 1651-1669.
    [2] Dodds, C.J. and A.R. Plummer, ”Laboratory road simulation for full vehicle testing : A Review,” Symposium on International Automotive Technology, 2001, pp. 487-494.
    [3] Xiaodong Ji, K.K., Takuya Nagae, Ryuta Enokida, Masayoshi Nakashima, ”A substructure shaking table test for reproduction of earthquake responses of high-rise buildings,” Earthquake Engineering & Structural Dynamics, vol. 38, (12), 2009, pp. 1381-1399.
    [4] Aghili, F., ”A mechatronic testbed for revolute-joint prototypes of a manipulator,” IEEE Transactions on Robotics, vol. 22, (6), 2006, pp. 1265-1273.
    [5] Dressler, K., M. Speckert, and G. Bitsch, ”Virtual durability test rigs for automotive engineering,” Vehicle System Dynamics, vol. 47, (4), 2009, pp. 387–401.
    [6] Reinhorn, A.M., M. Bruneau, S. Chu, X. Shao, and M. Pitman, ”Large scale real time dynamic hybrid testing technique–Shake tables substructure testing,” Proceedings of ASCE Structures Congress, vol. 457, 2003, pp. 457-464.
    [7] De Klerk, D., D.J. Rixen, and S.N. Voormeeren, ”General framework for dynamic substructuring: History, review, and classification of techniques,” AIAA Journal, vol. 46, (5), 2008, pp. 1169-1181.
    [8] Gawthrop, P.J., M.I. Wallace, and D.J. Wagg., ”Bond-graph based substructuring of dynamical systems,” Earthquake Engineering & Structural Dynamics, vol. 34, (6), 2005, pp. 687-703.
    [9] Jung, R.Y. and P. Benson Shing, ”Performance evaluation of a real-time pseudodynamic test system,” Earthquake Engineering & Structural Dynamics, vol. 35, (7), 2006, pp. 789-810.
    [10] Bonnet, P.A., M.S. Williams, and A. Blakeborough, ”Compensation of actuator dynamics in real-time hybrid tests,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems & Control Engineering, vol. 221, (2), 2007, pp. 251-264.
    [11] Trigui, R., B. Jeanneret, B. Malaquin, F. Badin, and C. Plasse. Hardware in the loop simulation of a diesel parallel mild-hybrid electric vehicle. Vehicle Power and Propulsion Conference. 2007, Arlington, pp. 448-455.
    [12] Stoten, D.P., J.Y. Tu, and G. Li, ”Synthesis and control of generalised dynamically substructured systems,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 223, 2009, pp. 371-392.
    [13] Tu, J.Y., ”Frameworks for the synthesis of substructured dynamics, substructurability and exact synchronisation theories,” Structural Control and Health Monitoring, 2012.
    [14] Inman, D.J., Engineering vibration. 1994, London: Prentice Hall.
    [15] Fagan, M.J., Finite element analysis: theory and practice. 1997: Addison Wesley Longman.
    [16] Shing, P.B., Z. Wei, R.-Y. Jung, and E. Stauffer, Nees fast hybrid test system at the university of Colorado, in 13th World Conference on Earthquake Engineering. 2004: Vancouver, B.C., Canada. pp. Paper No. 3497.
    [17] Stauffer, E., G. Haussmann, K. Smith, and R. Wallen, Fast hybrid testing at CU NEES: benchmark tests. 2007, Center for Fast Hybrid Testing Department of Civil Environmental and Architectural Engineering University of Colorado: Boulder, Colorado.
    [18] Wang, T., M. Nakashima, and P. Pan, ”On-line hybrid test combining with general-purpose finite element software,” Earthquake Engineering & Structural Dynamics, vol. 35, (12), 2006, pp. 1471-1488.
    [19] Darby, A.P., M.S. Williams, and A. Blakeborough, ”Stability and delay compensation for real-time substructure testing,” Journal of Engineering Mechanics, vol. 128, (12), 2002, pp. 1276-1284.
    [20] Wallace, M.I., J. Sieber, S.A. Neild, D.J. Wagg, and B. Krauskopf, ”Stability analysis of real-time dynamic substructuring using delay differential equation models,” Earthquake Engineering & Structural Dynamics, vol. 34, (15), 2005, pp. 1817-1832.
    [21] Tu, J.Y., D.P. Stoten, R.A. Hyde, and G. Li, ”A state-space approach for the control of multivariable dynamically substructured systems,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, (7), 2011, pp. 935-953.
    [22] Stoten, D.P. and R.A. Hyde, ”Adaptive control of dynamically substructured systems: the single-input single-output case,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, 2006, pp. 63-79.
    [23] Stoten, D.P., J.Y. Tu, and G. Li. Adaptive control of generalised dynamically substructured systems. 17th IFAC World Congress. 2008, Seoul, Korea, pp. 14090–14095.
    [24] Stoten, D.P., J.Y. Tu, and G. Li, ”Synthesis and control of generalised dynamically substructured systems,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 223, 2009, pp. 371-392.
    [25] Kautsky, J. and N.K. Nichols, ”Robust pole assignment in linear state feedback,” International Journal of Control, vol. 41, 1985, pp. 1129-1155.
    [26] Tu, J.Y., Control of nonlinear system using the inverse dynamics compensation via simulation (IDCS) method, in Department of Mechanical Engineering. 2006, University of Bristol: Bristol, UK.
    [27] Tagawa, Y., J.Y. Tu, and D.P. Stoten, ”Inverse dynamics compensation via ‘simulation of feedback control systems',” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, (1), 2011, pp. 137-153.
    [28] Kyrychko, Y.N., S.J. Hogan, A. Gonzalez-Buelga, and D.J. Wagg, ”Modelling real-time dynamic substructuring using partial delay differential equations,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 463, (2082), 2007, pp. 1509-1523.
    [29] Rogers, J.M. and A.D. McCulloch, ”A collocation-Galerkin finite element model of cardiac action potential propagation,” Biomedical Engineering, IEEE Transactions on, vol. 41, (8), 1994, pp. 743-757.
    [30] Rahman, B.M.A. and J.B. Davies, ”Penalty Function Improvement of Waveguide Solution by Finite Elements,” Microwave Theory and Techniques, IEEE Transactions on, vol. 32, (8), 1984, pp. 922-928.
    [31] Wilson, E.L., ”The static condensation algorithm,” International Journal for Numerical Methods in Engineering, vol. 8, (1), 1974, pp. 198-203.
    [32] Golub, G.H. and C. Reinsch, ”Singular value decomposition and least squares solutions,” Numerische Mathematik, vol. 14, (5), 1970, pp. 403-420.
    [33] Neild, S.A., D.P. Stoten, D. Drury, and D.J. Wagg, ”Control issues relating to real-time substructuring experiments using a shaking table,” Earthquake Engineering & Structural Dynamics, vol. 34, (9), 2005, pp. 1171-1192.
    [34] 林正議, ”以微控器為基礎的智慧型跑步機系統研發,” 國立中央大學電機系碩士論文, 2007.
    [35] 謝宏周, ”變頻器驅動之共模雜訊分析及其抑制技術研究,” 財團法人車輛研究測試中心, 2011.
    [36] Wallace, M.I., D.J. Wagg, and S.A. Neild, ”Multi-actuator substructure testing with applications to earthquake engineering: how do we assess accuracy?,” 13th World Conference on Earthquake Engineering, 2004, pp. 3241.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE